scholarly journals Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2789
Author(s):  
Swarup Roy ◽  
Ruchir Priyadarshi ◽  
Jong-Whan Rhim

Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film’s UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film.

2018 ◽  
Vol 131 ◽  
pp. 293-298 ◽  
Author(s):  
Ruizhi Ning ◽  
Miyuki Takeuchi ◽  
Jin-Ming Lin ◽  
Tsuguyuki Saito ◽  
Akira Isogai

Materials ◽  
2017 ◽  
Vol 10 (6) ◽  
pp. 659 ◽  
Author(s):  
Zhuangzhuang Chu ◽  
Tianrui Zhao ◽  
Lin Li ◽  
Jian Fan ◽  
Yuyue Qin

Author(s):  
Sneha Sawade ◽  
Pramod Kulkarni

We reported a simple, green and eco-friendly approach for the synthesis of zinc oxide nanoparticles using aqueous extract of Pongamia pinnata plant leaves acts as reducing agent as well as capping agent. Biosynthesized zinc oxide nanoparticles were characterized by FTIR, X-ray diffraction and field emission scanning electron microscopy. The results suggested that the zinc oxide nanoparticles synthesized by aqueous extract of Pongamia pinnata plant leaves with high purity, mostly spherical in shape with an average size of 23.5 nm.


2011 ◽  
Vol 287-290 ◽  
pp. 302-305
Author(s):  
Xi Ping Gao ◽  
Ke Yong Tang ◽  
Yu Qing Zhang

The mechanical properties, swelling, solubility, and optical properties of composite films with poly(vinyl alcohol) (PVA) and gelatin were studied. With increasing the PVA content in the composite films, the tensile strength (TS) and elongation at break (EB) of the films increase. The swelling and solubility are different with different gelatin/PVA ratios, with the lowest at 1:5.


Zinc deficiency is one of the major malnutritional problems worldwide specifically in developing and developed countries. The zinc uptake takes place in human body in ionic form and metabolized naturally and converted into nano form. In the present study zinc oxide nanoparticles (ZnONPs) were synthesized by starch. The synthesized different ZnONPs were characterized by Fourier Transform Infra-Red spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X ray analysis (EDX). FTIR analysis revealed Zinc peak at 405.05 cmˉ1 .The average size of the synthesized ZnONPs was in the range from 200-300 nm with flower like shape. Furthermore, toxicity and level of nanoparticle accumulation were evaluated in young and adult guppies (Poecilia reticulata) using different concentration of ZnONPs. To explore the toxicological effect, the different concentration of nanoparticles administered in young and adult guppies. There was a dose dependent toxicological effects were noted in the guppies.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4447
Author(s):  
Chun-Tu Chou ◽  
Shih-Chen Shi ◽  
Chih-Kuang Chen

An environmentally friendly, hydrophobic polyvinyl alcohol (PVA) film was developed as an alternative to commercial straws for mitigating the issue of plastic waste. Nontoxic and biodegradable cellulose nanocrystals (CNCs) and nanofibers (CNFs) were used to prepare PVA nanocomposite films by blade coating and solution casting. Double-sided solution casting of polyethylene-glycol–poly(lactic acid) (PEG–PLA) + neat PLA hydrophobic films was performed, which was followed by heat treatment at different temperatures and durations to hydrophobize the PVA composite films. The hydrophobic characteristics of the prepared composite films and a commercial straw were compared. The PVA nanocomposite films exhibited enhanced water vapor barrier and thermal properties owing to the hydrogen bonds and van der Waals forces between the substrate and the fillers. In the sandwich-structured PVA-based hydrophobic composite films, the crystallinity of PLA was increased by adjusting the temperature and duration of heat treatment, which significantly improved their contact angle and water vapor barrier. Finally, the initial contact angle and contact duration (at the contact angle of 20°) increased by 35% and 40%, respectively, which was a significant increase in the service life of the biodegradable material-based straw.


Author(s):  
Prashast Kumar Tripathi Satish Chandra Sati

Abstract-In this research paper we have reported the single pot synthesis of zinc oxide nanoparticles (ZnONPs) for the first time by utilisation of leaves extract of Himalayan medicinal plant Artemisia roxburghiana. The principle of green chemistry was utilised at maximum possible level to make the synthesis not only environmentally compatible but also cost effective. The obtained nanoparticles are of good shape and size as confirmed by the instrumental techniques such as Powder XRD, HR-TEM, HR-SEM and FT-IR. The average size of the synthesized nanoparticles was between 26 to 35 nm. These nanoparticles then screened for the anti - microbial assay in which it has shown positive activity against E. coli, A. Tereus and C. falcatum. The second application of the synthesized nanoparticles is estimation of anti - oxidant activity against the DPPH. The IC value of the nanoparticles is formed to be 50 53 in EtoH while that of the standard, ascorbic acid was 26 in the same solvent. Keywords:Art emisia roxburghiana, Asteraceae, ZnONPs, Antimicrobial activity and Antioxidant activity


Sign in / Sign up

Export Citation Format

Share Document