scholarly journals Effect of Conformation of Sugar Beet Pectin on the Interfacial and Emulsifying Properties

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Benjamin Bindereif ◽  
Heike Karbstein ◽  
Katharina Zahn ◽  
Ulrike van der Schaaf

The influence of the conformation of sugar beet pectin (SBP) on the interfacial and emulsifying properties was investigated. The colloidal properties of SBP, such as zeta potential and hydrodynamic diameter, were characterized at different pH levels. Furthermore, pendant drop tensiometry and quartz crystal microgravimetry were used to study adsorption behavior (adsorbed mass and adsorption rate) and stabilizing mechanism (layer thickness and interfacial tension). A more compact conformation resulted in a faster reduction of interfacial tension, higher adsorbed mass, and a thicker adsorption layer. In addition, emulsions were prepared at varying conditions (pH 3–5) and formulations (1–30 wt% MCT oil, 0.1–2 wt% SBP), and their droplet size distributions were measured. The smallest oil droplets could be stabilized at pH 3. However, significantly more pectin was required at pH 3 compared to pH 4 or 5 to sufficiently stabilize the oil droplets. Both phenomena were attributed to the more compact conformation of SBP at pH < pKa: On the one hand, pectins adsorbed faster and in greater quantity, forming a thicker interfacial layer. On the other hand, they covered less interfacial area per SBP molecule. Therefore, the SBP concentration must be chosen appropriately depending on the conformation.

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 105 ◽  
Author(s):  
Yunys Pérez-Betancourt ◽  
Bianca de Carvalho Lins Fernandes Távora ◽  
Mônica Colombini ◽  
Eliana L. Faquim-Mauro ◽  
Ana Maria Carmona-Ribeiro

Since antigens are negatively charged, they combine well with positively charged adjuvants. Here, ovalbumin (OVA) (0.1 mg·mL−1) and poly (diallyldimethylammonium chloride) (PDDA) (0.01 mg·mL−1) yielded PDDA/OVA assemblies characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM) as spherical nanoparticles (NPs) of 170 ± 4 nm hydrodynamic diameter, 30 ± 2 mV of zeta-potential and 0.11 ± 0.01 of polydispersity. Mice immunization with the NPs elicited high OVA-specific IgG1 and low OVA-specific IgG2a production, indicating a Th-2 response. Delayed-type hypersensitivity reaction (DTH) was low and comparable to the one elicited by Al(OH)3/OVA, suggesting again a Th-2 response. PDDA advantages as an adjuvant were simplicity (a single-component adjuvant), low concentration needed (0.01 mg·mL−1 PDDA) combined with antigen yielding neglectable cytotoxicity, and high stability of PDDA/OVA dispersions. The NPs elicited much higher OVA-specific antibodies production than Al(OH)3/OVA. In vivo, the nano-metric size possibly assured antigen presentation by antigen-presenting cells (APC) at the lymph nodes, in contrast to the location of Al(OH)3/OVA microparticles at the site of injection for longer periods with stimulation of local dendritic cells. In the future, it will be interesting to evaluate combinations of the antigen with NPs carrying both PDDA and elicitors of the Th-1 response.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2758 ◽  
Author(s):  
Jeff Allen Kai Silva ◽  
Jiří Šimůnek ◽  
John E. McCray

The HYDRUS unsaturated flow and transport model was modified to simulate the effects of non-linear air-water interfacial (AWI) adsorption, solution surface tension-induced flow, and variable solution viscosity on the unsaturated transport of per- and polyfluoroalkyl substances (PFAS) within the vadose zone. These modifications were made and completed between March 2019 and May 2019, and were implemented into both the one-dimensional (1D) and two-dimensional (2D) versions of HYDRUS. Herein, the model modifications are described and validated against the available literature-derived PFAS transport data (i.e., 1D experimental column transport data). The results of both 1D and 2D example simulations are presented to highlight the function and utility of the model to capture the dynamic and transient nature of the temporally and spatially variable interfacial area of the AWI (Aaw) as it changes with soil moisture content (Θw) and how it affects PFAS unsaturated transport. Specifically, the simulated examples show that while AWI adsorption of PFAS can be a significant source of retention within the vadose zone, it is not always the dominant source of retention. The contribution of solid-phase sorption can be considerable in many PFAS-contaminated vadose zones. How the selection of an appropriate Aaw(Θw) function can impact PFAS transport and how both mechanisms contribute to PFAS mass flux to an underlying groundwater source is also demonstrated. Finally, the effects of soil textural heterogeneities on PFAS unsaturated transport are demonstrated in the results of both 1D and 2D example simulations.


1974 ◽  
Vol 83 (3) ◽  
pp. 435-442 ◽  
Author(s):  
P. C. Longden

SummaryComparisons of the effects of harvesting sugar-beet seed by the traditional method of tripodding with barn drying, swathing followed by threshing with a pick-up combine or desiccation with diquat followed by direct combine harvesting showed that there were no consistent or large effects on seed yield, germination, monogermity or size distribution. Thus the best method will be the one which is easiest and/or cheapest, which at present is swathing followed by pick-up combine threshing.Sprays of NAA or 2,4,5-T at 10 or 100 mg a.i./l water before or after flowering had no effect on seed yield or germination and efforts to restrict the loss by shedding of large viable seed failed. Neither chemical decreased germination percentage by setting parthenocarpic seed. Attempts were made to dwarf the 2 m high seed crop to make it suitable for direct combine harvesting. Daminozide sprayed at 1000, 5000 or 10000 mg a.i./l water before or after the winter did not affect plant height, seed yield, germination, monogermity or size distribution. Chlormequat chloride applied similarly dwarfed plants by up to 18% but this was not enough to give a crop less than 1 m high suitable for direct combine harvesting. It did not affect seed yield, germination, monogermity or size distribution. Ethephon sprayed at 10, 100 or 1000 mg a.i./l water when plants were bolting had no detected effects. Chlorflurecolmethyl was sprayed at 10 or 100 before bolting or 1, 10 or 100 mg a.i./l water afterwards. Plants sprayed with the 100 mg/1 solution were dwarfed to less than 1 m high but the treatment was unsuccessful because it greatly reduced seed yield and germination; monogermity was not affected but a much greater proportion of seed fell into the small size grades.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 394 ◽  
Author(s):  
Iryna Antal ◽  
Oliver Strbak ◽  
Iryna Khmara ◽  
Martina Koneracka ◽  
Martina Kubovcikova ◽  
...  

In this study, we analysed the physico-chemical properties of positively charged magnetic fluids consisting of magnetic nanoparticles (MNPs) functionalised by different amino acids (AAs): glycine (Gly), lysine (Lys) and tryptophan (Trp), and the influence of AA–MNP complexes on the MRI relaxivity. We found that the AA coating affects the size of dispersed particles and isoelectric point, as well as the zeta potential of AA–MNPs differently, depending on the AA selected. Moreover, we showed that a change in hydrodynamic diameter results in a change to the relaxivity of AA–MNP complexes. On the one hand, we observed a decrease in the relaxivity values, r1 and r2, with an increase in hydrodynamic diameter (the relaxivity of r1 and r2 were comparable with commercially available contrast agents); on the other hand, we observed an increase in r2* value with an increase in hydrodynamic size. These findings provide an interesting preliminary look at the impact of AA coating on the relaxivity properties of AA–MNP complexes, with a specific application in molecular contrast imaging originating from magnetic nanoparticles and magnetic resonance techniques.


Sign in / Sign up

Export Citation Format

Share Document