scholarly journals Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi)

Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 47 ◽  
Author(s):  
Gyoung-Deuck Kim ◽  
Jin Lee ◽  
Joong-Hyuck Auh

The metabolomic screening of potential anti-inflammatory compounds in the leaves of Actinidia arguta was performed by using LC-MS/MS. Ethanol extracts were prepared, and the anti-inflammatory effects were investigated based on nitric oxide (NO) synthesis and inducible nitric oxide synthase expression in lipopolysaccharide-induced RAW 264.7 macrophages. The 75% ethanol extract showed the highest inhibitory effect on nitric oxide (NO) production, and it was further separated by in vitro bioassay-guided fractionation using preparative LC with reversed-phase column separation. Through multiple steps of fractionation, sub-fraction 1-3 was finally purified, and caffeic acid derivatives, such as caffeoylthreonic acid and danshensu (salvianic acid A), were successfully identified as key anti-inflammatory compounds by LC-MS/MS and metabolomics analyses. This is the first study identifying anti-inflammatory compounds in A. arguta (Actinidia arguta) leaves through bioassay-guided fractionation and metabolomics screening. Results of this study would be useful for the application of A. arguta leaves as a nutraceutical.

2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110559
Author(s):  
Le Minh Ha ◽  
Ngo Thi Phuong ◽  
Nguyen Thi Thu Hien ◽  
Pham Thi Tam ◽  
Do Thi Thao ◽  
...  

In this study, we aimed at evaluating in vitro and in vivo anti-inflammatory activity of various extracts of the rhizomes of Globba pendula Roxb. Three extracts ( n-hexane, ethyl acetate, and water) were screened for their inhibitory effect on NO production by lipopolysaccharide-stimulated RAW 264.7 macrophages. The ethyl acetate extract of G. pendula rhizomes (EGP) showed a potential effect with an IC50 value of 32.45 µg/mL. For in vivo study, the ethyl acetate extract was further investigated for its anti-inflammatory effect using collagen antibody-induced arthritic mice (CAIA). The level of arthritis in experimental mice significantly reduced ( P < .05) after treatment with EGP at a dose of 500 mg/kg body weight (b.w.). This study also revealed that EGP is orally non-toxic. Ethyl p-methoxy cinamate was identified as the main constituent of EGP, which may result in its anti-inflammatory effect.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 222 ◽  
Author(s):  
Wenhui Jin ◽  
Longhe Yang ◽  
Zhiwei Yi ◽  
Hua Fang ◽  
Weizhu Chen ◽  
...  

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


2003 ◽  
Vol 285 (4) ◽  
pp. G747-G753 ◽  
Author(s):  
Catalina Caballero-Alomar ◽  
Carmen Santos ◽  
Diego Lopez ◽  
M. Teresa Mitjavila ◽  
Pere Puig-Parellada

We examined in vitro the source and role of basal nitric oxide (NO) in proximal segments of guinea pig taenia caeci in nonadrenergic, noncholinergic (NANC) conditions. Using electron paramagnetic resonance (EPR), we measured the effect of the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 10–4 M), the neuronal blocker tetrodotoxin (TTX, 10–6 M), or both on spontaneous contractions and on the production of basal NO. Both l-NAME and TTX, when tested alone, increased the amplitude and frequency of contractions. NO production was abolished by l-NAME and was inhibited by 38% by TTX. When tested together, l-NAME in the presence of TTX or TTX in the presence of l-NAME had no further effect on the amplitude or frequency of spontaneous contractions, and the NO production was inhibited. These findings suggest that basal NO consists of TTX-sensitive and TTX-resistant components. The TTX-sensitive NO has an inhibitory effect on spontaneous contractions; the role of TTX-resistant NO is unknown.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Lei Wang ◽  
You-Jin Jeon ◽  
Jae-Il Kim

Abstract Background Inflammation plays a crucial role in the pathogenesis of many diseases such as arthritis and atherosclerosis. In the present study, we evaluated anti-inflammatory activity of sterol-rich fraction prepared from Spirogyra sp., a freshwater green alga, in an effort to find bioactive extracts derived from natural sources. Methods The sterol content of ethanol extract of Spirogyra sp. (SPE) was enriched by fractionation with hexane (SPEH), resulting 6.7 times higher than SPE. Using this fraction, the in vitro and in vivo anti-inflammatory activities were evaluated in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells and zebrafish. Results SPEH effectively and dose-dependently decreased the production of nitric oxide (NO) and prostaglandin E2 (PGE2). SPEH suppressed the production of pro-inflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β through downregulating nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW 264.7 cells without cytotoxicity. The in vivo test results indicated that SPEH significantly and dose-dependently reduced reactive oxygen species (ROS) generation, cell death, and NO production in LPS-stimulated zebrafish. Conclusions These results demonstrate that SPEH possesses strong in vitro and in vivo anti-inflammatory activities and has the potential to be used as healthcare or pharmaceutical material for the treatment of inflammatory diseases.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


Author(s):  
Eleonora Salvolini ◽  
Monia Orciani ◽  
Arianna Vignini ◽  
Roberto Primio ◽  
Laura Mazzanti

AbstractRecent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the site of inflammation. In particular, we investigated in vitro the intracellular calcium concentration ([Ca2+]i), the level of NO released by PMN and platelets, and the PMN myeloperoxidase activity after incubation with disodium pamidronate, since there was a postulated modulatory effect of this aminosubstituted bisphosphonate on leukocytes both in vitro and in vivo. Our data shows that the pamidronate treatment provoked a significant increase in the [Ca2+]i parallel to the enhancement in NO release, suggesting a possible activation of constitutive nitric oxide synthase, while the myeloperoxidase activity was significantly reduced. In conclusion, we hypothesized that treatment with pamidronate could stimulate NO-production by cells present near the bone compartment, thus constituting a protective mechanism against bone resorption occurring during inflammation. In addition, PMN- and platelet-derived NO could act as a negative feed-back signal to restrict the inflammatory processes.


2019 ◽  
Vol 8 (3) ◽  
pp. 86
Author(s):  
Hasim Hasim ◽  
Yupi Yulianita Arifin ◽  
Dimas Andrianto ◽  
Didah Nur Faridah

Belimbing wuluh merupakan tanaman jenis buah dan obat tradisional. Tanaman belimbing wuluh sudah sering dimanfaatkan masyarakat salah satunya untuk mengobati penyakit seperti batuk dan radang rektum. Tujuan penelitian ini adalah menguji senyawa fitokimia, menganalisis kandungan total fenolik dan flavonoid, serta aktivitas antioksidan dan antiinflamasi secara in vitro pada ekstrak etanol daun belimbing wuluh. Metode yang dilakukan pada penelitian ini adalah ekstraksi daun belimbing wuluh, skrining fitokimia, perhitungan total fenol dan flavonoid, uji aktivitas antioksidan, dan uji aktivitas antiinflamasi. Senyawa fitokimia yang terkandung pada ekstrak etanol daun belimbing wuluh adalah saponin, tanin, steroid, flavonoid, dan alkaloid. Kandungan total fenolik dan flavonoid ekstrak etanol daun belimbing wuluh secara berturut-turut sebesar 39,03 dan 97,28 µg QE/mg. Ekstrak etanol daun belimbing wuluh memiliki aktivitas antioksidan yang tergolong sangat kuat, sementara aktivitas antiinflamasinya terutama ditunjukkan pada konsentrasi ekstrak 200 µg/ ml, memiliki nilai persen inhibisi hemolisis yang paling tinggi. Kesimpulannya, ekstrak etanol daun belimbing wuluh dapat menjadi salah satu sumber antioksidan dan antiinflamasi alami.Ethanol Extracts of Averrhoa Bilimbi Leaf Demonstrated Antioxidative and Anti-inflammatory ActivityAbstractAverrhoa bilimbi, a fruit-bearing plant, has been traditionally used for medicinal purposes such as treatment of cough and rectal inflammation. In this current work, ethanol extract of Averrhoa bilimbi leaf was analyzed, with regard to phytochemical composition, i.e. total phenolic, and flavonoid, antioxidant activity, and in vitro antiinflammation activity. Extraction of carambola leaves, phytochemical screening, total phenolic and flavonoid contens, assay of antioxidant activity, and assay of anti-inflammatory activity were done in this research. As a result, the leaf extract positively contained some phytochemical compounds, i.e. saponin, tannin, steroid, flavonoid, and alkaloid. Furthermore, total phenolic and flavonoid of the leaf extract was found at 39.03 and 97.28 µg QE/mg extract, respectively. Additionally, antioxidant activity of the leaf extract was classified as very strong, while its anti-inflammatory feature at extract concentration of 200 µg/ml exhibited the highest inhibition of hemolysis. In summary, the ability of Averrhoa bilimbi leaf ethanol extracts to act as antioxidative and anti-inflammatory agents was determined and this may open the use for natural antioxidant and anti-inflammatory agents.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4463 ◽  
Author(s):  
Chun-Yi Huang ◽  
Tzu-Cheng Chang ◽  
Yu-Jing Wu ◽  
Yun Chen ◽  
Jih-Jung Chen

Three new compounds, 4-geranyloxy-2-hydroxy-6-isoprenyloxybenzophenone (1), hypericumone A (2) and hypericumone B (3), were obtained from the aerial parts of Hypericum sampsonii, along with six known compounds (4–9). The structures of these compounds were determined through spectroscopic and MS analyses. Hypericumone A (2), sampsonione J (8) and otogirinin A (9) exhibited potent inhibition (IC50 values ≤ 40.32 μM) against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. Otogirinin A (9) possessed the highest inhibitory effect on NO production with IC50 value of 32.87 ± 1.60 μM. The well-known proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α) was also inhibited by otogirinin A (9). Western blot results demonstrated that otogirinin A (9) downregulated the high expression of inducible nitric oxide synthase (iNOS). Further investigations on the mechanism showed that otogirinin A (9) blocked the phosphorylation of MAPK/JNK and IκBα, whereas it showed no effect on the phosphorylation of MAPKs/ERK and p38. In addition, otogirinin A (9) stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that otogirinin A (9) could be considered as potential compound for further development of NO production-targeted anti-inflammatory agent.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 741 ◽  
Author(s):  
Jiwon Jang ◽  
Jong Sub Lee ◽  
Young-Jin Jang ◽  
Eui Su Choung ◽  
Wan Yi Li ◽  
...  

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.


Author(s):  
Nima Rahmati ◽  
Fatemeh Hajighasemi

Background and Aims: Nitric oxide (NO) has an essential role in inflammation and has been related to pathogenesis and the progress of numerous inflammatory-based diseases, including some cancers. Peganum harmala (P. harmala) is a medicinal plant used for the treatment of numerous diseases such as several infections. Also, anti-inflammatory effects of P. harmala extracts and its derivatives (harmaline and harmine) by suppressing myeloperoxidase, NO, and other mediators have been demonstrated in vivo. In this study, the effect of P. harmala seeds aqueous extract on NO production in U937 monocytic cells and peritoneal macrophages has been evaluated in vitro. Materials and Methods: U937 and mice peritoneal macrophages were cultured in Roswell Park Memorial institute-1640 with 10% fetal calf serum. Then, the cells at the logarithmic growth phase were incubated with different concentrations of aqueous extract of P. harmala seeds (0.1-1 mg/ml) for 24 hours. Next, NO production was assessed by the Griess method in the culture medium. Results: P. harmala seeds aqueous extract did not significantly affect lipopolysaccharide-induced NO production in U937 cells and peritoneal macrophages after 24 hours incubation time compared with untreated control cells. Conclusion: These results suggest that the anti-inflammatory effects of P. harmala may be mediated through NO-independent mechanism(s). However, further studies are warranted to define the P. harmala aqueous extract impact on NO expression in other related normal and cancerous cells.


Sign in / Sign up

Export Citation Format

Share Document