scholarly journals Effects of Calcium and Manganese on Sporulation of Bacillus Species Involved in Food Poisoning and Spoilage

Foods ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 119 ◽  
Author(s):  
Martti Sinnelä ◽  
Young Park ◽  
Jae Lee ◽  
KwangCheol Jeong ◽  
Young-Wan Kim ◽  
...  

Spores are resistant against many extreme conditions including the disinfection and sterilization methods used in the food industry. Selective prevention of sporulation of Bacillus species is an ongoing challenge for food scientists and fermentation technologists. This study was conducted to evaluate the effects of single and combined supplementation of calcium and manganese on sporulation of common pathogenic and food spoilage Bacillus species: B. cereus, B. licheniformis, B. subtilis and B. coagulans. Sporulation of Bacillus vegetative cells was induced on sporulation media supplemented with diverse concentrations of the minerals. Under the various mineral supplementation conditions, the degree of sporulation was quantified with colonies formed by the Bacillus spores. The results revealed that B. licheniformis and B. cereus displayed the weakest sporulation capabilities on media with minimal supplementation levels of calcium and manganese. The lowest sporulation of B. subtilis and B. coagulans was observed on media supplemented with the highest level of calcium and low levels of manganese. Depending on effect of supplementation on sporulation, the Bacillus species were divided into two distinct groups: B. licheniformis and B. cereus; and B. subtilis and B. coagulans. The information provides valuable insight to selectively reduce sporulation of Bacillus species undesirable in the food industry.

2021 ◽  
Vol 12 ◽  
Author(s):  
Martti Tapani Sinnelä ◽  
Alixander Mattay Pawluk ◽  
Young Hun Jin ◽  
Dabin Kim ◽  
Jae-Hyung Mah

Bacterial spores often survive thermal processing used in the food industry, while heat treatment leads not only to a decrease in the nutritional and organoleptic properties of foods, but also to a delay in fermentation of fermented foods. Selective reduction of undesirable spores without such impediments is an ongoing challenge for food scientists. Thus, increased knowledge of the spore-forming bacteria is required to control them. In this study, the heat resistance results (D100°C) of the spores of four Bacillus species were determined and compared to previous literature, and found that B. cereus has significantly lower heat resistance than the other Bacillus species, B. coagulans, B. subtilis, and B. licheniformis. Using the spores of these strains, this study also evaluated the effects of single and combined supplementation of calcium (0.00–2.00 mM) and manganese (0.00–0.50 mM) on heat resistance (D100°C). The results revealed that the spores of B. licheniformis and B. cereus displayed the smallest heat resistance when sporulated on media rich in calcium. Conversely, B. coagulans spores and B. subtilis spores exhibited the greatest heat resistance when sporulated under calcium-rich conditions. The opposite results (stronger heat resistance for B. licheniformis spores and B. cereus spores, and smaller heat resistance for B. coagulans spores and B. subtilis spores) were obtained when the spores were formed on media poor in the minerals (particularly calcium). Based on the results, the Bacillus species were divided into two groups: B. licheniformis and B. cereus; and B. coagulans and B. subtilis. The study provides valuable insight to selectively reduce spores of undesirable Bacillus species in the food industry.


1970 ◽  
Vol 60 (4) ◽  
Author(s):  
Magdalena A Olszewska

The capability of bacteria to colonize food processing surfaces and to form biofilm has become an emerging concern for food industry. The presence and persistence of biofilm on food processing surfaces may pose a risk of food spoilage or food poisoning. A better understanding of bacterial adhesion and resistance of biofilms is needed to ensure quality and safety of food products. This review focuses on microscopic approaches incorporated to explore biofilm mode of existence in food processing environments. An application of antimicrobial agents for the biofilm control, in particular for bacteria connected with food processing environments, is also highlighted. In addition, some aspects of biofilm resistance, especially the phenomenon of persister cells, are discussed.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Kristina Borch-Pedersen ◽  
Hilde Mellegård ◽  
Kai Reineke ◽  
Preben Boysen ◽  
Robert Sevenich ◽  
...  

ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions that maintain the sensory and nutritional qualities of the food. High-pressure (HP) processing is a nonthermal food-processing technology used to eliminate microbes from food. The application of this technology for spore eradication in the food industry requires a better understanding of how HP affects the spores of different bacterial species. The present study provides novel insights into how HP affects Bacillus licheniformis spores, a species associated with food spoilage and occasionally food poisoning. We describe the roles of different germination receptors in HP-induced germination and the effects of two different pressure levels on the germination and inactivation of spores. This study will potentially contribute to the effort to implement HP technology for spore inactivation in the food industry.


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


1984 ◽  
Vol 5 (2) ◽  
pp. 71-74 ◽  
Author(s):  
Inge Gurevich ◽  
Patricia Tafuro ◽  
Sharon P. Krystofiak ◽  
Robert D. Kalter ◽  
Burke A. Cunha

AbstractDuring a ten-month period from September 1981 to July 1982 three episodes of pseudobacteremia due to Bacillus species occurred at this 550-bed institution. The first involved eight isolates, the second 11, and the third seven isolates of the organism, all with the same antibiogram.The patients involved did not exhibit clinical signs of septicemia, and in only one case was more than one specimen per patient positive when multiple blood samples were obtained. Occasional blood cultures of Bacillus species identified in between clusters revealed a different antibiogram.Extensive epidemiologic investigation of patient locations, phlebotomists, and time of cultures yielded no common source. Components involved in the transport and processing of blood cultures, including the radiometric blood culture processor, were also sampled but without recovery of the organism. After the last episode, a layer of dust was noted inside the machine, and culture of this dust grew Bacillus spp. with the same antibiogram as those found in the blood cultures. The filter from an air conditioning unit in close proximity to the machine grew several species of Bacillus.It is presumed that Bacillus spores in the dust were introduced into the blood culture bottles following the heat sterilization of the gas sampling (inoculation/removal) needles.Modification of the cover of the machine was undertaken to prevent access of dust bearing microbes to the inside of the machine. In addition, maintenance now includes regular disinfection/cleaning of the “floor” of the machine, and more frequent changes of the air conditioner filter.


2009 ◽  
Vol 72 (9) ◽  
pp. 1909-1915 ◽  
Author(s):  
ELIZABETH M. GRASSO ◽  
AHMED E. YOUSEF ◽  
LUIS A. RODRIGUEZ-ROMO ◽  
LUIS E. RODRIGUEZ-SAONA

Bacillus species may be resistant to processing and sanitation procedures, making their control an important issue in the food industry. The objective of this study was to develop a rapid method for the differentiation of Bacillus cells at the strain level using infrared microspectroscopy and multivariate pattern recognition techniques. Aliquots (10 ml) of vegetative cells (~103 CFU/ml) from four strains of each of three Bacillus species (B. cereus, B. mycoides, and B. thuringiensis) were filtered onto hydrophobic grid membranes. The membranes were placed on tryptic soy agar and incubatedat 42°C for 24 h and then removed from the agar and dried, and the biomass of individual vegetative colonies was directly measured by attenuated total reflectance infrared (ATRIR) microspectroscopy. Soft independent modeling of class analogy models generated from second derivative transformed spectra in the 1,300 to 900 cm−1 region exhibited clusters that permitted accurate strain-level classification of all isolates. Major discrimination was related to the signal from phosphate-containing compounds, likely phospholipids. Results indicate that a simple ATR-IR microspectroscopy technique combined with multivariate analysis could provide the food industry with a rapid and reagent-free screening procedure to complement more elaborate molecular identification methods.


1978 ◽  
Vol 41 (12) ◽  
pp. 953-956 ◽  
Author(s):  
D. C. PARADIS ◽  
M. E. STILES

Bologna sandwiches inoculated separately with low levels (100 to 1000 per g) of specific pathogens at time of sandwich preparation to simulate conditions that might occur in home or food service preparation, were stored at 4, 21 and 30 C for 0, 4, 8 and 25 h and monitored for growth of pathogens. All pathogens, except Clostridium perfringens, were capable of significant growth after more than 8 h of incubation at 30 C, but not at 4 or 21 C. Significant growth at 21 C only occurred with Staphylococcus aureus after 25 h of incubation. C. perfringens failed to grow on bologna in all sandwiches. All other pathogens, except S. aureus, failed to grow on bologna with low pH (pH &lt;6.1). Growth of S. aureus, was retarded on bologna at pH 5.5, and inhibited at pH 5.1. Only gram negative pathogens (enteropathogenic Escherichia coli and Salmonella typhimurium) were adversely affected by increased bacterial competition. Results indicated that bologna in sandwiches under these experimental conditions would only become a potential vehicle for food poisoning under almost unrealistic conditions of handling and storage.


2020 ◽  
Vol 8 (9) ◽  
pp. 1359
Author(s):  
Sarah Azinheiro ◽  
Joana Carvalho ◽  
Marta Prado ◽  
Alejandro Garrido-Maestu

Food poisoning continue to be a threat in the food industry showing a need to improve the detection of the pathogen responsible for the hospitalization cases and death. DNA-based techniques represent a real advantage and allow the detection of several targets at the same time, reducing cost and time of analysis. The development of new methodology using SYBR Green qPCR for the detection of L. monocytogenes, Salmonella spp. and E. coli O157 simultaneously was developed and a non-competitive internal amplification control (NC-IAC) was implemented to detect reaction inhibition. The formulation and supplementation of the enrichment medium was also optimized to allow the growth of all pathogens. The limit of detection (LoD) 95% obtained was <1 CFU/25 g for E. coli O157, and 2 CFU/25 g for Salmonella spp. and L. monocytogenes and regarding the multiplex detection a LoD 95% of 1.7 CFU/25 g was observed. The specificity, relative sensitivity and accuracy of full methodology were 100% and the use of the NC-IAC allowed the reliability of the results without interfering with the sensitivity of the methodology. The described study proved to obtain results comparable to those of probe-based qPCR, and more economically than classical high resolution melting qPCR, being both important aspects for its implementation in the food industry.


2020 ◽  
pp. FSO628
Author(s):  
Annette d'Arqom ◽  
Melvanda G Putri ◽  
Yovani Savitri ◽  
Andi Muh Rahul Alfaidin

Aim: Low levels of immune-related micronutrients have been identified in β-thalassemia samples. Moreover, the excess amount of iron, contributing to oxidative stress in the pathogenesis of the disease, alters the immune system in β-thalassemia, which is important during the COVID-19 pandemic. Materials & Methods: Searches of PUBMED and EMBASE were conducted to identify the level and supplementation of micronutrients in β-thalassemia, published from 2001-May 2020. Results: The review found six observational and five interventional studies supporting the importance of supplementing vitamins and minerals among patients with β-thalassemia. Conclusion: Supplementation of immune-related vitamins and minerals might bring benefits to the immune system, especially in reducing oxidative stress in β-thalassemia.


1992 ◽  
Vol 1 (1) ◽  
pp. 69-87 ◽  
Author(s):  
Sharon Macdonald ◽  
Roger Silverstone

This article raises issues concerning popular representations of science, and in particular of scientific controversy, through a case-study of the treatment of food poisoning controversy in a museum exhibition. It is argued that the science that is created for the public is shaped not only by the overt intentions of the exhibition makers but also by constraints inherent in structural aspects of the exhibition-making process and exhibition philosophies. More specifically, we argue that some of the strategies intended to foster public understanding of science create problems for the representation of scientific controversy, and, more generally, for certain types of science. The article also gives attention to scientific sources and the politics of the museum's relationship with the scientific community and the food industry. The contrast with other media is made throughout the article as a means of highlighting the different strategies employed, and constraints experienced, by the various institutions involved in putting science on display for the public.


Sign in / Sign up

Export Citation Format

Share Document