scholarly journals Parameters of the Supernova-Driven Interstellar Turbulence

Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Luke Chamandy ◽  
Anvar Shukurov

Galactic dynamo models take as input certain parameters of the interstellar turbulence, most essentially the correlation time τ, root-mean-square turbulent speed u, and correlation scale l. However, these quantities are difficult, or, in the case of τ, impossible, to directly observe, and theorists have mostly relied on order of magnitude estimates. Here we present an analytic model to derive these quantities in terms of a small set of more accessible parameters. In our model, turbulence is assumed to be driven concurrently by isolated supernovae (SNe) and superbubbles (SBs), but clustering of SNe to form SBs can be turned off if desired, which reduces the number of model parameters by about half. In general, we find that isolated SNe and SBs can inject comparable amounts of turbulent energy into the interstellar medium, but SBs do so less efficiently. This results in rather low overall conversion rates of SN energy into turbulent energy of ∼1–3%. The results obtained for l, u and τ for model parameter values representative of the Solar neighbourhood are consistent with those determined from direct numerical simulations. Our analytic model can be combined with existing dynamo models to predict more directly the magnetic field properties for nearby galaxies or for statistical populations of galaxies in cosmological models.

2021 ◽  
Vol 11 (7) ◽  
pp. 2898
Author(s):  
Humberto C. Godinez ◽  
Esteban Rougier

Simulation of fracture initiation, propagation, and arrest is a problem of interest for many applications in the scientific community. There are a number of numerical methods used for this purpose, and among the most widely accepted is the combined finite-discrete element method (FDEM). To model fracture with FDEM, material behavior is described by specifying a combination of elastic properties, strengths (in the normal and tangential directions), and energy dissipated in failure modes I and II, which are modeled by incorporating a parameterized softening curve defining a post-peak stress-displacement relationship unique to each material. In this work, we implement a data assimilation method to estimate key model parameter values with the objective of improving the calibration processes for FDEM fracture simulations. Specifically, we implement the ensemble Kalman filter assimilation method to the Hybrid Optimization Software Suite (HOSS), a FDEM-based code which was developed for the simulation of fracture and fragmentation behavior. We present a set of assimilation experiments to match the numerical results obtained for a Split Hopkinson Pressure Bar (SHPB) model with experimental observations for granite. We achieved this by calibrating a subset of model parameters. The results show a steady convergence of the assimilated parameter values towards observed time/stress curves from the SHPB observations. In particular, both tensile and shear strengths seem to be converging faster than the other parameters considered.


1995 ◽  
Vol 377 ◽  
Author(s):  
Tilo P. Drüsedau ◽  
Andreas N. Panckow ◽  
Bernd Schröder

ABSTRACTInvestigations on the gap state density were performed on a variety of samples of hydrogenated amorphous silicon germanium alloys (Ge fraction around 40 at%) containing different amounts of hydrogen. From subgap absorption measurements the values of the “integrated excess absorption” and the “defect absorption” were determined. Using a calibration constant, which is well established for the determination of the defect density from the integrated excess absorption of a-Si:H and a-Ge:H, it was found that the defect density is underestimated by nearly one order of magnitude. The underlying mechanisms for this discrepancy are discussed. The calibration constants for the present alloys are determined to 8.3×1016 eV−1 cnr2 and 1.7×1016 cm−2 for the excess and defect absorption, respectively. The defect density of the films was found to depend on the Urbach energy according to the law derived from Stutzmann's dangling bond - weak bond conversion model for a-Si:H. However, the model parameters - the density of states at the onset of the exponential tails N*=27×1020 eV−1 cm−3 and the position of the demarcation energy Edb-E*=0.1 eV are considerably smaller than in a-Si:H.


1967 ◽  
Vol 30 (2) ◽  
pp. 241-258 ◽  
Author(s):  
P. Bradshaw

Townsend's (1961) hypothesis that the turbulent motion in the inner region of a boundary layer consists of (i) an ‘active’ part which produces the shear stress τ and whose statistical properties are universal functions of τ and y, and (ii) an ‘inactive’ and effectively irrotational part determined by the turbulence in the outer layer, is supported in the present paper by measurements of frequency spectra in a strongly retarded boundary layer, in which the ‘inactive’ motion is particularly intense. The only noticeable effect of the inactive motion is an increased dissipation of kinetic energy into heat in the viscous sublayer, supplied by turbulent energy diffusion from the outer layer towards the surface. The required diffusion is of the right order of magnitude to explain the non-universal values of the triple products measured near the surface, which can therefore be reconciled with universality of the ‘active’ motion.Dimensional analysis shows that the contribution of the ‘active’ inner layer motion to the one-dimensional wave-number spectrum of the surface pressure fluctuations varies as τ2w/k1 up to a wave-number inversely proportional to the thickness of the viscous sublayer. This result is strongly supported by the recent measurements of Hodgson (1967), made with a much smaller ratio of microphone diameter to boundary-layer thickness than has been achieved previously. The disagreement of the result with most other measurements is attributed to inadequate transducer resolution in the other experiments.


2018 ◽  
Vol 51 (4) ◽  
pp. 1059-1068 ◽  
Author(s):  
Pascal Parois ◽  
James Arnold ◽  
Richard Cooper

Crystallographic restraints are widely used during refinement of small-molecule and macromolecular crystal structures. They can be especially useful for introducing additional observations and information into structure refinements against low-quality or low-resolution data (e.g. data obtained at high pressure) or to retain physically meaningful parameter values in disordered or unstable refinements. However, despite the fact that the anisotropic displacement parameters (ADPs) often constitute more than half of the total model parameters determined in a structure analysis, there are relatively few useful restraints for them, examples being Hirshfeld rigid-bond restraints, direct equivalence of parameters and SHELXL RIGU-type restraints. Conversely, geometric parameters can be subject to a multitude of restraints (e.g. absolute or relative distance, angle, planarity, chiral volume, and geometric similarity). This article presents a series of new ADP restraints implemented in CRYSTALS [Parois, Cooper & Thompson (2015), Chem. Cent. J. 9, 30] to give more control over ADPs by restraining, in a variety of ways, the directions and magnitudes of the principal axes of the ellipsoids in locally defined coordinate systems. The use of these new ADPs results in more realistic models, as well as a better user experience, through restraints that are more efficient and faster to set up. The use of these restraints is recommended to preserve physically meaningful relationships between displacement parameters in a structural model for rigid bodies, rotationally disordered groups and low-completeness data.


Author(s):  
Stephen A Solovitz

Abstract Following volcanic eruptions, forecasters need accurate estimates of mass eruption rate (MER) to appropriately predict the downstream effects. Most analyses use simple correlations or models based on large eruptions at steady conditions, even though many volcanoes feature significant unsteadiness. To address this, a superposition model is developed based on a technique used for spray injection applications, which predicts plume height as a function of the time-varying exit velocity. This model can be inverted, providing estimates of MER using field observations of a plume. The model parameters are optimized using laboratory data for plumes with physically-relevant exit profiles and Reynolds numbers, resulting in predictions that agree to within 10% of measured exit velocities. The model performance is examined using a historic eruption from Stromboli with well-documented unsteadiness, again providing MER estimates of the correct order of magnitude. This method can provide a rapid alternative for real-time forecasting of small, unsteady eruptions.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2018 ◽  
Vol 15 (9) ◽  
pp. 2909-2930 ◽  
Author(s):  
Sebastian Lienert ◽  
Fortunat Joos

Abstract. A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.


2013 ◽  
Vol 20 (1) ◽  
pp. 19-23 ◽  
Author(s):  
V. M. Vasyliūnas

Abstract. The depression of the horizontal magnetic field at Earth's equator for the largest imaginable magnetic storm has been estimated (Vasyliūnas, 2011a) as −Dst ~ 2500 nT, from the assumption that the total pressure in the magnetosphere (plasma plus magnetic field perturbation) is limited, in order of magnitude, by the minimum pressure of Earth's dipole field at the location of each flux tube. The obvious related question is how long it would take the solar wind to supply the energy content of this largest storm. The maximum rate of energy input from the solar wind to the magnetosphere can be evaluated on the basis either of magnetotail stress balance or of polar cap potential saturation, giving an estimate of the time required to build up the largest storm, which (for solar-wind and magnetospheric parameter values typical of observed superstorms) is roughly between ~2 and ~6 h.


1997 ◽  
Vol 43 (143) ◽  
pp. 180-191 ◽  
Author(s):  
Ε. M. Morris ◽  
H. -P. Bader ◽  
P. Weilenmann

AbstractA physics-based snow model has been calibrated using data collected at Halley Bay, Antarctica, during the International Geophysical Year. Variations in snow temperature and density are well-simulated using values for the model parameters within the range reported from other polar field experiments. The effect of uncertainty in the parameter values on the accuracy of the predictions is no greater than the effect of instrumental error in the input data. Thus, this model can be used with parameters determined a priori rather than by optimization. The model has been validated using an independent data set from Halley Bay and then used to estimate 10 m temperatures on the Antarctic Peninsula plateau over the last half-century.


1973 ◽  
Vol 59 (2) ◽  
pp. 281-335 ◽  
Author(s):  
I. J. Wygnanski ◽  
F. H. Champagne

Conditionally sampled hot-wire measurements were taken in a pipe at Reynolds numbers corresponding to the onset of turbulence. The pipe was smooth and carefully aligned so that turbulent slugs appeared naturally atRe> 5 × 104. Transition could be initiated at lowerReby introducing disturbances into the inlet. For smooth or only slightly disturbed inlets, transition occurs as a result of instabilities in the boundary layer long before the flow becomes fully developed in the pipe. This type of transition gives rise to turbulent slugs which occupy the entire cross-section of the pipe, and they grow in length as they proceed downstream. The leading and trailing ‘fronts’ of a turbulent slug are clearly defined. A unique relation seems to exist between the velocity of the interface and the velocity of the fluid by which relaminarization of turbulent fluid is prevented. The length of slugs is of the same order of magnitude as the length of the pipe, although the lengths of individual slugs differ at the same flow conditions. The structure of the flow in the interior of a slug is identical to that in a fully developed turbulent pipe flow. Near the interfaces, where the mean motion changes from a laminar to a turbulent state, the velocity profiles develop inflexions. The total turbulent intensity near the interfaces is very high and it may reach 15% of the velocity at the centre of the pipe. A turbulent energy balance was made for the flow near the interfaces. All of the terms contributing to the energy balance must vanish identically somewhere on the interface if that portion of the interface does not entrain non-turbulent fluid. It appears that diffusion which also includes pressure transport is the most likely mechanism by which turbulent energy can be transferred to non-turbulent fluid. The dissipation term at the interface is negligible and increases with increasing turbulent energy towards the interior of the slug.Mixed laminar and turbulent flows were observed far downstream for\[ 2000 < Re < 2700 \]when a large disturbance was introduced into the inlet. The flow in the vicinity of the inlet, however, was turbulent at much lowerRe. The turbulent regions which are convected downstream at a velocity which is slightly smaller than the average velocity in the pipe we shall henceforth call puffs. The leading front of a puff does not have a clearly defined interface and the trailing front is clearly defined only in the vicinity of the centre-line. The length and structure of the puff is independent of the character of the obstruction which created it, provided that the latter is big enough to produce turbulent flow at the inlet. The puff will be discussed in more detail later.


Sign in / Sign up

Export Citation Format

Share Document