scholarly journals Comparison between the Transcriptomes of ‘KDML105’ Rice and a Salt-Tolerant Chromosome Segment Substitution Line

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 742
Author(s):  
Nopphawitchayaphong Khrueasan ◽  
Panita Chutimanukul ◽  
Kitiporn Plaimas ◽  
Teerapong Buaboocha ◽  
Meechai Siangliw ◽  
...  

‘KDML105’ rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the ‘KDML105’ rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and ‘KDML105’ transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in ‘KDML105’, suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in ‘KDML105’. These results suggested respiration was more inhibited in ‘KDML105’ than in CSSL18, and this may contribute to the higher salt susceptibility of ‘KDML105’ rice. Moreover, the DEGs between ‘KDML105’ and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.

2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 287 ◽  
Author(s):  
Ibrahim Al-Ashkar ◽  
Ali Alderfasi ◽  
Walid Ben Romdhane ◽  
Mahmoud F. Seleiman ◽  
Rania A. El-Said ◽  
...  

Salinity is a major obstacle to wheat production worldwide. Salt-affected soils could be used by improving salt-tolerant genotypes depending upon the genetic variation and salt stress response of adapted and donor wheat germplasm. We used a comprehensive set of morpho-physiological and biochemical parameters and simple sequence repeat (SSR) marker technique with multivariate analysis to accurately demonstrate the phenotypic and genetic variation of 18 wheat genotypes under salinity stress. All genotypes were evaluated without NaCl as a control and with 150 mM NaCl, until the onset of symptoms of death in the sensitive plant (after 43 days of salinity treatment). The results showed that the relative change of the genetic variation was high for all parameters, heritability (>60%), and genetic gain (>20%). Stepwise regression analysis, noting the importance of the root dry matter, relative turgidity, and their respective contributions to the shoot dry matter, indicated their relevance in improving and evaluating the salt-tolerant genotypes of breeding programs. The relative change of the genotypes in terms of the relative turgidity and shoot dry matter during salt stress was verified using clustering methods. For cluster analysis, the genotypes were classified into three groups: tolerant, intermediate, and sensitive, representing five, six, and seven genotypes, respectively. The morphological and genetic distances were significantly correlated based on the Mantel test. Of the 23 SSR markers that showed polymorphism, 17 were associated with almost all examined parameters. Therefore, based on the observed molecular marker-phenotypic trait association, the markers were highly useful in detecting tolerant and sensitive genotypes. Thus, it considers a helpful tool for salt tolerance through marker-assisted selection.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1667 ◽  
Author(s):  
Michael Santangeli ◽  
Concetta Capo ◽  
Simone Beninati ◽  
Fabrizio Pietrini ◽  
Cinzia Forni

Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum efficiency of PSII photochemistry (ΦPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit different salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions.


2021 ◽  
Author(s):  
Zeliang Zhang ◽  
Juyun Zheng ◽  
Zhaolong Gong ◽  
Yajun Liang ◽  
Zhiwei Sang ◽  
...  

Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Its salt tolerance varies greatly depending on the variety, growth stage, organs, and soil salt types. Therefore, the selection and utilization of excellent salt-tolerant germplasm resources and the excavation of excellent salt-tolerant salt and salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of 144 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China. Illumina Cotton SNP 70K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 experimental materials, and 18,432 highly consistent SNP loci were obtained by filtering. PCA (principal component analysis)indicated that 149 upland cotton materials could be divided into 2 subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d_Germination_potential, 3d_Bud_length_drop_rate, 7d_Germination_rate, 7d_Bud_length_drop_rate, 7d_Germination_weight, 3d_Bud_length, 7d_Bud_length, relative_germination_potential, Relative_germination_rate, 7d_Bud_weight_drop_rate, Salt tolerance index 3d_Germination_potential_index, 3d_Bud_length_index, 7d_Bud_length_index, 7d_Bud_weight_index, and 7d_Germination_rate_index were evaluated by genome association analysis. A total of 27 SNP markers closely related to salt tolerance traits and 15 SNP markers closely related to salt tolerance index were detected. At the SNP locus associated with the traits of the bud length decline rate at 7 days, alleles Gh_A01G0034 and Gh_D01G0028 related to plant salt tolerance were detected, and they are related to intracellular transport, membrane microtubule formation and actin network. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K + /Na + ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na + transport from the roots to the leaves, increasing K + absorption in the roots and reducing K + secretion from the leaves to maintain a significantly greater K + /Na + ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2018 ◽  
Vol 19 (9) ◽  
pp. 2609 ◽  
Author(s):  
Ping Li ◽  
Hong Yang ◽  
Gaojing Liu ◽  
Wenzhang Ma ◽  
Chuanhong Li ◽  
...  

Senescence-associated receptor-like kinase (SARK) family members in Arabidopsis, soybean, and rice are known to be positive regulators of leaf senescence. In the meantime, SARKs are extensively involved in stress response. However, their function and underlying molecular mechanism in stress responses in moss are not well known. Here, we investigated functional roles of SARK isolated from Physcomitrella patens (PpSARK) in salt stress response and senescence. PpSARK transcripts significantly accumulated under NaCl and abscisic acid (ABA) treatments, with higher expression in the moss gametophyte stage. Insertional gain-of-function mutants of PpSARK (PpSARKg) were more tolerant to salt stress and ABA than wild type (WT), whereas senescence of mutants was delayed during the protonema stage. Expression of stress-responsive genes in the ABA related pathway, such as PpABI3, PpABI5, PpPP2C, and PpLEA were significantly higher in PpSARKg and WT under salt stress conditions, suggesting that PpSARK might positively regulate salt tolerance via an ABA-related pathway. Endogenous ABA contents also increased 3-fold under salt stress conditions. These results indicate that PpSARK functions as a positive regulator in salt stress responses, while possibly functioning as a negative regulator in senescence in moss.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots were identified as a significant time point and tissue type. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


2019 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Soil salinization areas are sparsely populated and have fragile ecosystems, which seriously restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soil. However, the mechanism underlying the salt tolerance of Zoysia remains unknown. In our study, we investigated the phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant), to salt stress. The results showed that Z011 exhibited stronger salt tolerance than Z004, with a higher K + /Na + ratio in both its leaves and roots. To further study the molecular mechanisms underlying salt tolerance, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and roots were identified as the significant time point and tissue. According to the GO and KEGG analyses of different comparisons, the key DEGs participating in the salt-stress response were selected and belonged to the hormone pathway, TF families and the DUF family. The interaction between the key DEGs was discussed, revealing that auxin signal transduction and TF families may cooperate in Zoysia salt tolerance and that the WRKY family may be the most important TF family. Thus, our research provides fundamental information regarding the salt-stress response in Zoysia and enhances the understanding of molecular mechanisms in salt-tolerant plants.


2013 ◽  
Vol 138 (5) ◽  
pp. 350-357 ◽  
Author(s):  
Tao Hu ◽  
Haiying Yi ◽  
Longxing Hu ◽  
Jinmin Fu

Plants possess abiotic stress responses that alter photosynthetic metabolism under salinity stress. The objective of this study was to identify the stomatal and metabolic changes associated with photosynthetic responses to NaCl stress in perennial ryegrass (Lolium perenne). Five-week-old seedlings of two perennial ryegrass genotypes, PI 516605 (salt-sensitive) and BARLP 4317 (salt-tolerant), were subjected to 0 and 250 mm NaCl for 8 days. The salt tolerance in perennial ryegrass was significantly associated with leaf relative water content (RWC) and photosynthetic capacity through the maintenance of greater metabolic activities under prolonged salt stress. BARLP 4317 maintained greater turf quality, RWC, and stomatal limitations but a lower level of lipid peroxidation [malondialdehyde (MDA)] and intercellular CO2 concentration than PI 516605 at 8 days after treatment (DAT). Ribulose-1, 5-bisphosphate carboxylase:oxygenase (Rubisco) activity and activation state, transcriptional level of rbcL gene, and expression level of Rubisco large subunit (LSU) declined in stressed perennial ryegrass but were higher in salt-tolerant genotype at 8 DAT. Furthermore, photosynthetic rate increased linearly with increasing Rubisco activity, Rubisco activation state, and RWC in both genotypes. The same linear relationship was found between RWC and Rubisco activity. However, MDA content decreased linearly with increasing RWC in both genotypes. Salinity-induced inhibition of photosynthesis in perennial ryegrass was mainly the result of stomatal limitation during early salt stress and metabolic limitation associated with the inhibition of RWC, activity of Rubisco, expression level of rbcL gene, and LSU under a prolonged period of severe salinity.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Runhong Gao ◽  
Ke Duan ◽  
Guimei Guo ◽  
Zhizhao Du ◽  
Zhiwei Chen ◽  
...  

Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley.


Sign in / Sign up

Export Citation Format

Share Document