scholarly journals Characterisation of an Ovine Keratin Associated Protein (KAP) Gene, Which Would Produce a Protein Rich in Glycine and Tyrosine, but Lacking in Cysteine

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 848 ◽  
Author(s):  
Hua Gong ◽  
Huitong Zhou ◽  
Jiqing Wang ◽  
Shaobin Li ◽  
Yuzhu Luo ◽  
...  

The keratin-associated proteins (KAPs) are structural components of hair/wool fibres. All of the KAPs identified to date contain cysteine, which is thought to form disulphide bonds cross-linking the keratin intermediate filaments. Here, we report the identification of a KAP gene in sheep that would produce a protein that contains a high proportion (63.2 mol%) of glycine and tyrosine, but would not contain any cysteine. This suggests that other forms of intra- and inter-strand interaction may occur with this KAP, such as interactions via ring-stacking and hydrogen-bonding. The gene was dissimilar to any previously reported KAP gene, and was therefore assigned to a new family, and named KRTAP36-1. The KRTAP36-1 genome sequence was almost identical to some EST sequences from sheep and goat skin follicles, suggesting that it is present and expressed in sheep and goats. A BLAST search of the human genome assembly sequence did not reveal any human homologue. Three variant sequences (named A to C) of ovine KRTAP36-1 were identified and four single nucleotide polymorphisms (SNPs) were detected. One SNP was located 32 bp upstream of the coding region, and all of the others were in the coding region and were nonsynonymous. After correcting for potential linkage to the proximal KRTAP20-1, variant B of KRTAP36-1 was found to be associated with increased prickle factor (PF) in wool, suggesting that variation in the gene may have the potential to be used as gene marker for breeding sheep with lower PF.

2018 ◽  
Vol 156 (7) ◽  
pp. 922-928 ◽  
Author(s):  
W. Li ◽  
H. Gong ◽  
H. Zhou ◽  
J. Wang ◽  
X. Liu ◽  
...  

AbstractKeratin-associated proteins (KAPs) are constituents of wool and hair fibres and are believed to play an important role in determining the characteristics of the fibres. In the current study, a polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) approach was used to screen for variation in the ovine KAP15-1 gene (KRTAP15-1). Four PCR-SSCP banding patterns, representing four different variants (named A to D), were detected. Four single nucleotide polymorphisms were found within the coding region and three of these were non-synonymous. The effect of this genetic variation on wool traits was investigated in 396 Merino × Southdown-cross sheep. Of the three variants found in these sheep (A, B and C), the presence of B was found to be associated with decreased wool yield, while C was associated with increased wool yield and decreased fibre diameter standard deviation. Sheep of genotype AC had a higher wool yield than those of genotype AA or AB.


2004 ◽  
Vol 1 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Hao Gang-Ping ◽  
Wu Zhong-Yi ◽  
Chen Mao-Sheng ◽  
Cao Ming-Qing ◽  
Dominique Brunel ◽  
...  

AbstractThe levels of drought tolerance and nucleotide polymorphism at the CBF4 locus were examined in a world-wide sample of 17 core accessions of Arabidopsis thaliana. The results showed that different accessions exhibited considerable differences in adaptation to drought stress. Compared with Columbia accession, the frequency of nucleotide polymorphism at the CBF4 locus of 25av, 203av and 244av accessions, including single nucleotide polymorphism (SNP) and insertion/deletion (Indel), was high, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. No significance in all regions of Tajima's D test indicated that the neutral mutation hypothesis could explain the nucleotide polymorphism in this CBF4 gene region. The higher polymorphism was the result of purification selection. Nucleotide polymorphism in the non-coding region was three times higher than in the coding region. This might indicate a recent relaxation of selection pressures on the non-coding region of CBF4 gene. In the coding region of CBF4, SNP frequency was 1 SNP per 96.4 bp and one non-synonymous mutation was detected from 25av, 203av and 244av accessions: the amino acid variation gly↔val at position 205, caused by the nucleotide variation G↔T at position 1034 (corresponding to the nucleotide at position 19 696 of GenBank accession no. AB015478 as 1). Furthermore, four differential SNPs were discovered in haplotype 6 constituted by 203av, one of them located in the 3′ non-coding region (A↔C at position 1106) and the others in the 5′ non-coding region (A↔G, A↔C and G↔A at positions 27, 129 and 171, respectively). The drought tolerance assay indicated that accession 203av was the best at tolerating water deficiency. We propose that haplotype 6 is consistent with its drought tolerance.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hai-bo Zhang ◽  
Wen Su ◽  
Hu Xu ◽  
Xiao-yan Zhang ◽  
You-fei Guan

Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.


2018 ◽  
Vol 5 (1) ◽  
pp. 37-40
Author(s):  
Seri Mirianti Ishar ◽  
Jeyaganesan Pillay a/l Balaraman ◽  
Muhammad Jefri Mohd Yusof ◽  
Khairul Osman ◽  
Lee Loong Chuen

Human DNA consists of nucleus DNA (nDNA) and mitochondrial DNA (mtDNA). Both are valuable in medicine and forensic genetics but in this project, single nucleotide polymorphisms (SNPs) in mtDNA are used to trace the mutation occurred. Mutations in the sequence of alleles can lead to haplogroup variation and also certain diseases. The purpose of this study is to screen of mutations on alleles G709A, G3496T, and A3537G in Malay population of The National University of Malaysia (UKM) students. These SNPs lie in the ND1 (nitrogen dehydrogenase subunit 1) coding region, and the reports state that these three alleles are prone to mutate. From MitoMap Web site, the mutations of these alleles are reported to have potential in causing several diseases with the collaboration of other SNPs mutation. Allele G709A is reported to have an association with hearing loss and Leber Hereditary Optic Neuropathy (LHON) while allele G3496T is associated to LHON only. Allele A3537G is related to diabetes. A total of 100 DNA samples were collected from Malay students of UKM and preserved on FTA card to be purified later. The concentration of the DNA on the purified FTA card was between 10μM to 20μM. An attempt was made by amplifying those three loci from the genomic DNA. The amplified product was detected and separated using 1% gel electrophoresis. Before sequencing, the PCR products were visualized under UV light using gel documentation system. All PCR products were sequenced to detect the mutation on every single position chosen. From the alignment of sequencing results, allele G709A and allele G3496T showed no mutation. Meanwhile four samples from alleles A3537G has the mutation. From the results obtained, it seems that mutations are rare in all selected alleles. It is recommended to increase the sample size and alleles selected in the future to increase the strength of the study. This study also should be applied to other populations in Malaysia such as Chinese and Indian.  


2011 ◽  
Vol 300 (4) ◽  
pp. H1530-H1535 ◽  
Author(s):  
Carol Moreno ◽  
Jan M. Williams ◽  
Limin Lu ◽  
Mingyu Liang ◽  
Jozef Lazar ◽  
...  

Transfer of chromosome 13 from the Brown Norway (BN) rat onto the Dahl salt-sensitive (SS) genetic background attenuates the development of hypertension, but the genes involved remain to be identified. The purpose of the present study was to confirm by telemetry that a congenic strain [SS.BN-(D13Hmgc37-D13Got22)/Mcwi, line 5], carrying a 13.4-Mb segment of BN chromosome 13 from position 32.4 to 45.8 Mb, is protected from the development of hypertension and then to narrow the region of interest by creating and phenotyping 11 additional subcongenic strains. Mean arterial pressure (MAP) rose from 118 ± 1 to 186 ± 5 mmHg in SS rats fed a high-salt diet (8.0% NaCl) for 3 wk. Protein excretion increased from 56 ± 11 to 365 ± 37 mg/day. In contrast, MAP only increased to 152 ± 9 mmHg in the line 5 congenic strain. Six subcongenic strains carrying segments of BN chromosome 13 from 32.4 and 38.2 Mb and from 39.9 to 45.8 Mb were not protected from the development of hypertension. In contrast, MAP was reduced by ∼30 mmHg in five strains, carrying a 1.9-Mb common segment of BN chromosome 13 from 38.5 to 40.4 Mb. Proteinuria was reduced by ∼50% in these strains. Sequencing studies did not identify any nonsynonymous single nucleotide polymorphisms in the coding region of the genes in this region. RT-PCR studies indicated that 4 of the 13 genes in this region were differentially expressed in the kidney of two subcongenic strains that were partially protected from hypertension vs. those that were not. These results narrow the region of interest on chromosome 13 from 13.4 Mb (159 genes) to a 1.9-Mb segment containing only 13 genes, of which 4 are differentially expressed in strains partially protected from the development of hypertension.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 142 ◽  
Author(s):  
Lingrong Bai ◽  
Jing Wang ◽  
Huitong Zhou ◽  
Hua Gong ◽  
Jinzhong Tao ◽  
...  

Keratin-associated proteins (KAPs) are a diverse group of proteins and form a matrix that cross-links keratin intermediate filaments in hair and wool fibres. From over 100 KAP genes (KRTAPs) identified in mammalian species, KRTAP25-1 is a high sulphur (HS)-KAP gene, which has recently been described in humans. Here, we report the absence of KRTAP25-1 in sheep, and describe a new HS-KRTAP (named KRTAP28-1) in the chromosome region where KRTAP25-1 was expected to be found. Six variants (A−F) of KRTAP28-1 containing eight single nucleotide polymorphisms (SNPs) and a TG repeat polymorphism were detected. One was positioned 30 bp upstream of the transcription start codon and all the others were non-synonymous SNPs, including a nonsense SNP. The TG repeat polymorphism would lead to a reading frame shift at the carboxyl-terminal end. The effect of KRTAP28-1 on wool traits was investigated with 383 Southdown × Merino-cross lambs from seven sire lines. Of the four genotypes with a frequency of over 5%, lambs of genotypes AB and BD produced wool of a smaller MFD than lambs of genotype BC. This shows that KRTAP28-1 is associated with wool fibre diameter, and that variation in this gene might have potential for use as a gene marker for reducing wool fibre diameter.


2008 ◽  
Vol 5 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Wang Xiao-Bo ◽  
Ma Chuan-Xi ◽  
Si Hong-Qi ◽  
He Xian-Fang

AbstractPolyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products. In this study, wheat PPO sequences (mRNA) were searched/BLASTed in the NCBI database and aligned using DNAMAN software. The results showed that wheat PPO genes could be divided into two clusters (I and II) and that three genes (‘i’) of cluster II seemed not to be located on chromosomes 2A and 2D. Ninety-four single nucleotide polymorphisms (SNPs) were detected between two haplotypes of the PPO gene on chromosome 2D. Eighty of these were found in the coding region (coding (c) SNPs) and 36 were non-synonymous cSNPs, which could affect the PPO amino acid sequence. Primers (STS-H) were designed at some non-synonymous cSNPs sites and were used to investigate the correlations between allelic variants and PPO activity of seeds – a total of 130 common wheat varieties were evaluated in 2 years. The results showed that STS-H could amplify a 460 bp DNA fragment in most cultivars with high PPO activity, while no PCR product was detected in most cultivars with low PPO activity. To improve the selection efficiency of a single dominance molecular marker, the multiplex polymerase chain reaction (PCR) system of STS-H and STS01 markers was also studied, based on the complementary between them.


2021 ◽  
Author(s):  
So-Hyeon Bong ◽  
Ganghee Cho ◽  
Dong-Seon Kim ◽  
Sunggil Kim

Abstract Self-incompatibility (SI) responses of radish (Raphanus sativus L.) are determined by two tightly linked genes encoding an S receptor kinase (SRK) and an S-locus cysteine-rich protein/S locus protein 11 (SCR/SP11), respectively. A radish showing an almost self-compatible (SC) phenotype was identified in this study. Inheritance patterns showed that this SC phenotype was dominant over an SI phenotype. In addition, this SC phenotype co-segregated with an S haplotype in an F2 population. This SC radish contained an RsS-26 haplotype in which duplicate SRK-like genes were previously identified. Full-length sequences of two SRK-like genes of 18,133-bp and 6,200-bp in length were obtained from radish with the RsS-26 haplotype (designated as RsSRK-26-1 and RsSRK-26-2, respectively). Duplicate SCR/SP11-like genes were also identified in the radish with the RsS-26 haplotype. Phylogenetic analyses indicated that both duplicate SRK-like and SCR/SP11-like genes were closely related to other known SRK and SCR/SP11 genes, respectively. No critical mutation was found in the coding region of SRK-like or SCR/SP11-like gene. However, a 4,146-bp intact LTR-retrotransposon was identified in the third intron of RsSRK-26-1 of the SC radish. Interestingly, this LTR-retrotransposon was not detected in three other breeding lines containing the same RsS-26 haplotype. Except for this LTR-retrotransposon, only two single nucleotide polymorphisms (SNPs) were identified in intronic regions between normal and mutant RsSRK-26-1 alleles. While normal transcription was observed for radish showing RsSRK-26-1 and SI phenotypes in these three breeding lines, no transcript of RsSRK-26-1 was detected in the SC radish, suggesting that recent transposition of an LTR-retrotransposon in the RsSRK-26-1 gene might be responsible for the SC phenotype of radish.


Sign in / Sign up

Export Citation Format

Share Document