scholarly journals Dynamic Changes of the Anthocyanin Biosynthesis Mechanism During the Development of Heading Chinese Cabbage (Brassica rapa L.) and Arabidopsis Under the Control of BrMYB2

2020 ◽  
Vol 11 ◽  
Author(s):  
Qiong He ◽  
Qianqian Lu ◽  
Yuting He ◽  
Yaxiu Wang ◽  
Ninan Zhang ◽  
...  

Chinese cabbage is an important vegetable mainly planted in Asian countries, and mining the molecular mechanism responsible for purple coloration in Brassica crops is fast becoming a research hotspot. In particular, the anthocyanin accumulation characteristic of purple heading Chinese cabbage, along with the plant’s growth and head developing, is still largely unknown. To elucidate the dynamic anthocyanin biosynthesis mechanism of Chinese cabbage during its development processes, here we investigated the expression profiles of 86 anthocyanin biosynthesis genes and corresponding anthocyanin accumulation characteristics of plants as they grew and their heads developed, between purple heading Chinese cabbage 11S91 and its breeding parents. Anthocyanin accumulation of 11S91 increased from the early head formation period onward, whereas the purple trait donor 95T2-5 constantly accumulated anthocyanin throughout its whole plant development. Increasing expression levels of BrMYB2 and BrTT8 together with the downregulation of BrMYBL2.1, BrMYBL2.2, and BrLBD39.1 occurred in both 11S91 and 95T2-5 plants during their growth, accompanied by the significantly continuous upregulation of a phenylpropanoid metabolic gene, BrPAL3.1; a series of early biosynthesis genes, such as BrCHSs, BrCHIs, BrF3Hs, and BrF3’H; as well as some key late biosynthesis genes, such as BrDFR1, BrANS1, BrUF3GT2, BrUF5GT, Br5MAT, and Brp-Cout; in addition to the transport genes BrGST1 and BrGST2. Dynamic expression profiles of these upregulated genes correlated well with the total anthocyanin contents during the processes of plant growth and leaf head development, and results supported by similar evidence for structural genes were also found in the BrMYB2 transgenic Arabidopsis. After intersubspecific hybridization breeding, the purple interior heading leaves of 11S91 inherited the partial purple phenotypes from 95T2-5 while the phenotypes of seedlings and heads were mainly acquired from white 94S17; comparatively in expression patterns of investigated anthocyanin biosynthesis genes, cotyledons of 11S91 might inherit the majority of genetic information from the white type parent, whereas the growth seedlings and developing heading tissues of 11S91 featured expression patterns of these genes more similar to 95T2-5. This comprehensive set of results provides new evidence for a better understanding of the anthocyanin biosynthesis mechanism and future breeding of new purple Brassica vegetables.

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Qiong He ◽  
Yanjing Ren ◽  
Wenbin Zhao ◽  
Ru Li ◽  
Lugang Zhang

To elucidate the effect of low temperature on anthocyanin biosynthesis in purple head Chinese cabbage, we analyzed anthocyanin accumulation and related gene expression in the seedlings of purple head Chinese cabbage, white head parent Chinese cabbage, and its purple male parent under a normal 25 °C temperature and a low 12 °C temperature. Anthocyanin accumulation in purple lines was strongly induced by low temperature, and the total anthocyanin content of seedlings was significantly enhanced. In addition, nearly all phenylpropanoid metabolic pathway genes (PMPGs) were down-regulated, some early biosynthesis genes (EBGs) were up-regulated, and nearly all late biosynthesis genes (LBGs) directly involved in anthocyanin biosynthesis showed higher expression levels in purple lines after low-temperature induction. Interestingly, a R2R3-MYB transcription factor (TF) gene ‘BrMYB2’ and a basic-helix-loop-helix (bHLH) regulatory gene ‘BrTT8’ were highly up-regulated in purple lines after low temperature induction, and two negative regulatory genes ‘BrMYBL2.1’ and ‘BrLBD38.2’ were up-regulated in the white line. BrMYB2 and BrTT8 may play important roles in co-activating the anthocyanin structural genes in purple head Chinese cabbage after low-temperature induction, whereas down-regulation of BrMYB2 and up-regulation of some negative regulators might be responsible for white head phenotype formation. Data presented here provide new understanding into the anthocyanin biosynthesis mechanism during low temperature exposure in Brassica crops.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 898
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Xianjie Gu ◽  
Diya Lei ◽  
Bing Zhao ◽  
...  

Red-skinned pear is a promising commercial fruit due to its attractive appearance and nutritious value. Anthocyanin is the determinant of the red coloration of the pear peel. However, differences in anthocyanin accumulation exist among red pear cultivars with different genetic backgrounds. In this study, we analyzed the anthocyanin content and gene expression patterns in the fruits and different tissues of the red pear ‘Red Zaosu’ at different developmental stages and found a difference in anthocyanin accumulation between ‘Red Zaosu’ pear and its green mutant. The data showed that the expression profiles of transcripts that encoded critical anthocyanin biosynthetic genes were basically consistent with a tendency to a decreased anthocyanin content during fruit development, indicating that a synergistic effect of these genes was responsible for anthocyanin biosynthesis and regulation. Tissue-specific expression analysis of anthocyanin biosynthetic genes showed that they could be expressed in all tissues but at different levels. PbF3H, PbDFR, and PbANS were mainly expressed during the early flowering period, which explained the reduced levels of anthocyanin content in petals. Additionally, the content of anthocyanins and the expression levels of PbDFR, PbANS, and PbMYB10 significantly decreased in the green mutant of ‘Red Zaosu’, suggesting that PbDFR, PbANS, and PbMYB10 probably play a decisive role in determining the skin coloration of ‘Red Zaosu’ and its green mutant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2021 ◽  
Author(s):  
XUE YANG ◽  
Xiaojian Tang ◽  
Zhen Yang ◽  
Xinjie Zhao ◽  
Aiqin Han ◽  
...  

Abstract Backgroud: The coloring mechanism of grape (Vitis vinifera L.) berry in response to salinity during maturation is poorly understood. To determine the effect of salinity on fruit quality, especially anthocyanin accumulation, the grapevine cultivar Cabernet Sauvignon were sprayed with different concentrations of sodium chloride. Dynamic changes in anthocyanin accumulation and eight biosynthetic enzyme activities during maturation were also investigated to clarify the anthocyanin biosynthesis regulation. Results The analysis showed that the fruit’s fresh weight was decreased by NaCl spray. But the grape quality including reducing sugar, soluble sugars, total phenols and tannins increased significantly on harvest time. Ten individual anthocyanins were detected from the skin of Cabernet Sauvignon by ultra performance liquid chromatography (UPLC). And there was a significantly greater accumulation of total anthocyanin contents under salt treatment. The NaCl spray provoked metabolic responses in grapes and enhanced biosynthetic enzyme activities during riping. Correlation analysis showed that anthocyanin accumulation was closely related to the key enzyme LDOX both in the control and 100 mM NaCl treatment berries. Conclusion The application of NaCl to grape foliage effectively increase the quality of the Cabernet Sauvignon grape, improving soluble sugar, organic acid, phenolics and tannin contents, and the total anthocyanin contents in grape skins after varasion. These findings provide novel insight into the crucial factors that directly modulate anthocyanin biosynthesis and consequently control grape coloration.


2022 ◽  
Author(s):  
Ruimin Tang ◽  
Haitao Dong ◽  
Liheng He ◽  
Peng Li ◽  
Yuanrui Shi ◽  
...  

Abstract Background: Kelch repeat F-box (KFB) proteins play vital roles in the regulation of multitudinous biochemical and physiological processes in plants, including growth and development, stress response and secondary metabolism. Multiple KFBs have been characterized in various plant species, but this family members have not been systematically identified and analyzed in potato. Results: Genome and transcriptome analyses of StKFB gene family were conducted to dissect the structure, evolution and function of the KFBs in Solanum tuberosum L. Totally, 44 StKFB members were identified and were classified into 5 groups according to their structural and phylogenetic features. The chromosomal localization analysis showed that the 44 StKFB genes were located on 12 chromosomes. Among these genes, two pairs of genes (StKFB15/16 and StKFB40/41) were predicted to be tandemly duplicated genes, and one pair of genes (StKFB15/29) was segmentally duplicated genes. The syntenic analysis showed that the KFBs in potato were closely related to the KFBs in tomato and pepper. Expression profiles of StKFBs in 13 different tissues and in potato plants with different treatments uncovered distinct spatial expression patterns of these genes and their potential roles in response to various stresses. Transcriptomic and qRT-PCR analyses of StKFBs deciphered that multiple StKFB genes were differentially expressed in three colored potato tubers. Genes that were highly expressed in yellow fleshed tubers (Jin-16) and were lowly expressed in the red- (Red Rose-2) or purple-fleshed (Xisen-8) tubers, such as StKFB07, StKFB15, StKFB23, StKFB29 and StKFB44, may negatively regulate anthocyanin biosynthesis.Conclusions: This study reports the structure, evolution and expression characteristics of the KFB family in potato. These findings set the stage for further study of functional mechanisms of StKFBs, and also provide candidate genes for potato genetic improvement.


2020 ◽  
Vol 40 (3) ◽  
pp. 413-423
Author(s):  
Shuangyi Zhang ◽  
Yixi Chen ◽  
Lingling Zhao ◽  
Chenqi Li ◽  
Jingyun Yu ◽  
...  

Abstract Anthocyanin pigmentation is an important consumption trait of apple (Malus domestica Borkh.). In this study, we focused on the identification of NAC (NAM, ATAF1/2 and CUC2) proteins involved in the regulation of anthocyanin accumulation in apple flesh. A group of MdNACs was selected for comparison of expression patterns between the white-fleshed cultivar ‘Granny Smith’ and red-fleshed ‘Redlove’. Among them, MdNAC42 was screened, which exhibited a higher expression level in red-fleshed than in white-fleshed fruit, and has a positive correlation with anthocyanin content as fruits ripened. Moreover, overexpression of MdNAC42 in apple calli resulted in the up-regulation of flavonoid pathway genes, including MdCHS, MdCHI, MdF3H, MdDFR, MdANS and MdUFGT, thereby increasing the accumulation of anthocyanins, which confirmed the roles of MdNAC42 in anthocyanin biosynthesis. Notably, MdNAC42 was demonstrated to have an obvious interaction with MdMYB10 either in vitro or in vivo by yeast two-hybrid combined with bimolecular fluorescence complementation, further suggesting that MdNAC42 is an important part of the regulatory network controlling the anthocyanin pigmentation of red-fleshed apples. To the best of our knowledge, this is the first report identifying the MdNAC gene as related to anthocyanin accumulation in red-fleshed apples. This study provides valuable information for improving the regulatory model of anthocyanin biosynthesis in apple fruit.


2021 ◽  
Vol 22 (22) ◽  
pp. 12092
Author(s):  
Hongling Guan ◽  
Xinmin Huang ◽  
Yunna Zhu ◽  
Baoxing Xie ◽  
Houcheng Liu ◽  
...  

Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.


Genome ◽  
2019 ◽  
Vol 62 (8) ◽  
pp. 513-526 ◽  
Author(s):  
Si-Won Jin ◽  
Md Abdur Rahim ◽  
Hee-Jeong Jung ◽  
Khandker Shazia Afrin ◽  
Hoy-Taek Kim ◽  
...  

Purple ornamental cabbage (Brassica oleracea var. acephala) is a popular decorative plant, cultivated for its colorful leaf rosettes that persist in cool weather. It is characterized by green outer leaves and purple inner leaves, whose purple pigmentation is due to the accumulation of anthocyanin pigments. Phytohormones play important roles in anthocyanin biosynthesis in other species. Here, we identified 14 and 19 candidate genes putatively involved in abscisic acid (ABA) and ethylene (ET) biosynthesis, respectively, in B. oleracea. We determined the expression patterns of these candidate genes by reverse-transcription quantitative PCR (RT-qPCR). Among candidate ABA biosynthesis-related genes, the expressions of BoNCED2.1, BoNCED2.2, BoNCED6, BoNCED9.1, and BoAAO3.2 were significantly higher in purple compared to green leaves. Likewise, most of the ET biosynthetic genes (BoACS6, BoACS9.1, BoACS11, BoACO1.1, BoACO1.2, BoACO3.1, BoACO4, and BoACO5) had significantly higher expression in purple compared to green leaves. Among these genes, BoNCED2.1, BoNCED2.2, BoACS11, and BoACO4 showed particularly strong associations with total anthocyanin content of the purple inner leaves. Our results suggest that ABA and ET might promote the intense purple pigmentation of the inner leaves of purple ornamental cabbage.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Li Xue ◽  
Jian Wang ◽  
Jun Zhao ◽  
Yang Zheng ◽  
Hai-Feng Wang ◽  
...  

Abstract Background Pink-flowered strawberry is a promising new ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla) with bright color, a prolonged flowering period and edible fruits. Its flower color ranges from light pink to red. Pigment compounds accumulated in its fruits were the same as in cultivated strawberry fruits, but different from that in its flowers. However, the transcriptional events underlying the anthocyanin biosynthetic pathway have not been fully characterized in petal coloration. To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify the key genes, we performed an integrated analysis of the transcriptome and metabolome in petals of pink-flowered strawberry. Results The main pigments of red and dark pink petals were anthocyanins, among which cyanidins were the main compound. There were no anthocyanins detected in the white-flowered hybrids. A total of 50,285 non-redundant unigenes were obtained from the transcriptome databases involved in red petals of pink-flowered strawberry cultivar Sijihong at three development stages. Amongst the unigenes found to show significant differential expression, 57 were associated with anthocyanin or other flavonoid biosynthesis, in which they were regulated by 241 differentially expressed members of transcription factor families, such as 40 MYBs, 47 bHLHs, and 41 NACs. Based on a comprehensive analysis relating pigment compounds to gene expression profiles, the mechanism of flower coloration was examined in pink-flowered strawberry. A new hypothesis was proposed to explain the lack of color phenotype of the white-flowered strawberry hybrids based on the transcriptome analysis. The expression patterns of FpDFR and FpANS genes corresponded to the accumulation patterns of cyanidin contents in pink-flowered strawberry hybrids with different shades of pink. Moreover, FpANS, FpBZ1 and FpUGT75C1 genes were the major factors that led to the absence of anthocyanins in the white petals of pink-flowered strawberry hybrids. Meanwhile, the competitive effect of FpFLS and FpDFR genes might further inhibit anthocyanin synthesis. Conclusions The data presented herein are important for understanding the molecular mechanisms underlying the petal pigmentation and will be powerful for integrating novel potential target genes to breed valuable pink-flowered strawberry cultivars.


Sign in / Sign up

Export Citation Format

Share Document