scholarly journals The Genetic Basis of Natural Variation in Drosophila melanogaster Immune Defense against Enterococcus faecalis

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 234 ◽  
Author(s):  
Joanne R Chapman ◽  
Maureen A Dowell ◽  
Rosanna Chan ◽  
Robert L Unckless

Dissecting the genetic basis of natural variation in disease response in hosts provides insights into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E. faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single nucleotide polymorphisms associated with six genes with a significant (p < 10−08, corresponding to a false discovery rate of 2.4%) association with survival, none of which were canonical immune genes. To validate the role of these genes in immune defense, their expression was knocked-down using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also known as IM23), in E. faecalis infection response. This study adds to the growing set of association studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in immune defense differ for different pathogens.

2018 ◽  
Vol 109 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Dylan M Williams ◽  
Sara Hägg ◽  
Nancy L Pedersen

ABSTRACT Background Higher circulating antioxidant concentrations are associated with a lower risk of late-onset Alzheimer disease (AD) in observational studies, suggesting that diet-sourced antioxidants may be modifiable targets for reducing disease risk. However, observational evidence is prone to substantial biases that limit causal inference, including residual confounding and reverse causation. Objectives In order to infer whether long-term circulating antioxidant exposure plays a role in AD etiology, we tested the hypothesis that AD risk would be lower in individuals with lifelong, genetically predicted increases in concentrations of 4 circulating antioxidants that are modifiable by diet. Methods Two-sample Mendelian randomization analyses were conducted. First, published genetic association studies were used to identify single-nucleotide polymorphisms (SNPs) that determine variation in circulating ascorbate (vitamin C), β-carotene, retinol (vitamin A), and urate. Second, for each set of SNP data, statistics for genotype associations with AD risk were extracted from data of a genome-wide association study of late-onset AD cases and controls (n = 17,008 and 37,154, respectively). Ratio-of-coefficients and inverse-variance-weighted meta-analyses were the primary methods used to assess the 4 sets of SNP-exposure and SNP-AD associations. Additional analyses assessed the potential impact of bias from pleiotropy on estimates. Results The models suggested that genetically determined differences in circulating ascorbate, retinol, and urate are not associated with differences in AD risk. All estimates were close to the null, with all ORs for AD ≥1 per unit increase in antioxidant exposure (ranging from 1.00 for ascorbate to 1.05 for retinol). There was little evidence to imply that pleiotropy had biased results. Conclusions Our findings suggest that higher exposure to ascorbate, β-carotene, retinol, or urate does not lower the risk of AD. Replication Mendelian randomization studies could assess this further, providing larger AD case-control samples and, ideally, using additional variants to instrument each exposure.


2015 ◽  
Vol 113 (03) ◽  
pp. 655-663 ◽  
Author(s):  
Giovanna Marchetti ◽  
Domenico Girelli ◽  
Carlotta Zerbinati ◽  
Barbara Lunghi ◽  
Simonetta Friso ◽  
...  

Summaryassociation studies of coronary artery disease (CAD), could include functionally relevant associations. We propose an integrated genomic and transcriptomic approach for unravelling new potential genetic signatures of atherosclerosis. Fifteen among 91 single nucleotide polymorphisms (SNPs) were first selected for association in a sex- and age-adjusted model by examining 510 patients with CAD and myocardial infarction and 388 subjects with normal coronary arteries (CAD-free) in the replication stages of a genome-wide association study. We investigated the expression of 71 genes proximal to the 15 tag-SNPs by two subsequent steps of microarray-based Mrna profiling, the former in vascular smooth muscle cell populations, isolated from non-atherosclerotic and atherosclerotic human carotid portions, and the latter in whole carotid specimens. BCL3 and PVRL2, contiguously located on chromosome 19, and ABCA1, extensively investigated before, were found to be differentially expressed. BCL3 and PVRL2 SNPs were genotyped within a second population of CAD patients (n=442) and compared with CAD-free subjects (n=393). The carriership of the BCL3 rs2965169 G allele was more represented among CAD patients and remained independently associated with CAD after adjustment for all the traditional cardiovascular risk factors (odds ratio=1.70 with 95% confidence interval 1.07–2.71), while the BCL3 rs8100239 A allele correlated with metabolic abnormalities. The upregulation of BCL3 mRNA levels in atherosclerotic tissue samples was consistent with BCL3 protein expression, which was detected by immunostaining in the intima-media of atherosclerotic specimens, but not within non-atherosclerotic ones. Our integrated approach suggests a role for BCL3 in cardiovascular diseases.


Animals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Bo Zhu ◽  
Qinghe Li ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
Jie Wen ◽  
...  

Presently, the heterophil-to-lymphocyte (H/L) ratio is being studied extensively as a disease resistance trait. Through intricate mechanisms to identify and destroy pathogenic microorganisms, heterophils play a pivotal role in the immune defense systems of avian species. To reveal the genetic basis and molecular mechanisms affecting the H/L ratio, phenotypic and H/L data from 1650 white feather chicken broilers were used in performing a genome-wide association study. A self-developed, chicken-specific 55K chip was used for heterophils, lymphocytes, and H/L classification, according to individual genomic DNA profiles. We identified five significant single nucleotide polymorphisms (SNPs) when the genome-wide significance threshold was set to 5% (p < 2.42 × 10−6). A total of 15 SNPs obtained seemingly significant levels (p < 4.84 × 10−5). Gene annotation indicated that CARD11 (Caspase recruitment domain family member 11), BRIX1 (Biogenesis of ribosomes BRX1), and BANP (BTG3 associated nuclear protein) play a role in H/L-associated cell regulation and potentially constitute candidate gene regions for cellular functions dependent on H/L ratios. These results lay the foundation for revealing the genetic basis of disease resistance and future marker-assisted selection for disease resistance.


2018 ◽  
Author(s):  
Philippe Henry

AbstractCannabis can elicit various reactions in different consumers. In order to shed light on the mechanisms underlying the human-cannabis relationship, we begin to investigate the genetic basis of this differential response. The web-based platform OpenSNP was used to collect selfreported genetic and phenotypic data. Participants either reported a positively or negative affinity to cannabis. A total of 26 individuals were retained, 10 of which indicated several negative responses and the remaining 16 indicating strong affinity for Cannabis. A total of 325’895 single nucleotide polymorphisms (SNPs) were retained. The software TASSEL 5 was used to run a genome-wide association study (GWAS), with a generalized liner model (GLM) and1000 permutations. The analysis yielded a set of 45 SNPs that were significantly associated with the reported affinity to cannabis, including one strong outlier found in the MYO16 gene. A diagnostic process is proposed by which individuals can be assessed for their affinity to cannabis. We believe this type of tool may be helpful in alleviating some of the stigma associated with cannabis use in individuals sensitive to THC and other cannabis constituents such as myrcene, which may potentiate negative responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hye-Won Cho ◽  
Hyun-Seok Jin ◽  
Yong-Bin Eom

Most previous genome-wide association studies (GWAS) have identified genetic variants associated with anthropometric traits. However, most of the evidence were reported in European populations. Anthropometric traits such as height and body fat distribution are significantly affected by gender and genetic factors. Here we performed GWAS involving 64,193 Koreans to identify the genetic factors associated with anthropometric phenotypes including height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip ratio. We found nine novel single-nucleotide polymorphisms (SNPs) and 59 independent genetic signals in genomic regions that were reported previously. Of the 19 SNPs reported previously, eight genetic variants at RP11-513I15.6 and one genetic variant at the RP11-977G19.10 region and six Asian-specific genetic variants were newly found. We compared our findings with those of previous studies in other populations. Five overlapping genetic regions (PAN2, ANKRD52, RNF41, HGMA1, and C6orf106) had been reported previously but none of the SNPs were independently identified in the current study. Seven of the nine newly found novel loci associated with height in women revealed a statistically significant skeletal expression of quantitative trait loci. Our study provides additional insight into the genetic effects of anthropometric phenotypes in East Asians.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1531
Author(s):  
Yasemin Öner ◽  
Malena Serrano ◽  
Pilar Sarto ◽  
Laura Pilar Iguácel ◽  
María Piquer-Sabanza ◽  
...  

A genome-wide association study (GWAS) was performed to identify new single nucleotide polymorphisms (SNPs) and genes associated with mastitis resistance in Assaf sheep by using the Illumina Ovine Infinium® HD SNP BeadChip (680K). In total, 6173 records from 1894 multiparous Assaf ewes with at least three test day records and aged between 2 and 7 years old were used to estimate a corrected phenotype for somatic cell score (SCS). Then, 192 ewes were selected from the top (n = 96) and bottom (n = 96) tails of the corrected SCS phenotype distribution to be used in a GWAS. Although no significant SNPs were found at the genome level, four SNPs (rs419096188, rs415580501, rs410336647, and rs424642424) were significant at the chromosome level (FDR 10%) in two different regions of OAR19. The SNP rs419096188 was located in intron 1 of the NUP210 and close to the HDAC11 genes (61 kb apart), while the other three SNPs were totally linked and located 171 kb apart from the ARPP21 gene. These three genes were related to the immune system response. These results were validated in two SNPs (rs419096188 and rs424642424) in the total population (n = 1894) by Kompetitive Allele-Specific PCR (KASP) genotyping. Furthermore, rs419096188 was also associated with lactose content.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 432 ◽  
Author(s):  
Zhang ◽  
Wan ◽  
He ◽  
Lan ◽  
Li

Drastic changes in plant height (PH) are observed when maize adapt to a higher plant density. Most importantly, PH is an important factor affecting maize yield. Although the genetic basis of PH has been extensively studied using different populations during the past decades, genetic basis remains unclear in the F1 population, which was a widely used population in production. In this study, a genome-wide association study (GWAS) was conducted using an F1 population consisting of 300 maize hybrids with 17,652 single nucleotide polymorphisms (SNPs) makers to identify candidate genes for controlling PH. A total of nine significant SNPs makers and two candidate genes were identified for PH. The candidate genes, Zm00001d018617 and Zm00001d023659, were the genes most probable to be involved in the development of PH. Our results provide new insights into the genetic basis of PH in maize.


2020 ◽  
Author(s):  
Ken Batai ◽  
Mario J Trejo ◽  
Yuliang Chen ◽  
Lindsay N Kohler ◽  
Peter Lance ◽  
...  

ABSTRACT Background Selenium (Se) is a trace element that has been linked to many health conditions. Genome-wide association studies (GWAS) have identified variants for blood and toenail Se levels, but no GWAS has been conducted to date on responses to Se supplementation. Objectives A GWAS was performed to identify the single nucleotide polymorphisms (SNPs) associated with changes in Se concentrations after 1 year of supplementation. A GWAS of basal plasma Se concentrations at study entry was conducted to evaluate whether SNPs for Se responses overlap with SNPs for basal Se levels. Methods A total of 428 participants aged 40–80 years of European descent from the Selenium and Celecoxib Trial (Sel/Cel Trial) who received daily supplementation with 200 µg of selenized yeast were included for the GWAS of responses to supplementation. Plasma Se concentrations were measured from blood samples collected at the time of recruitment and after 1 year of supplementation. Linear regression analyses were performed to assess the relationship between each SNP and changes in Se concentrations. We further examined whether the identified SNPs overlapped with those related to basal Se concentrations. Results No SNP was significantly associated with changes in Se concentration at a genome-wide significance level. However, rs56856693, located upstream of the NEK6, was nominally associated with changes in Se concentrations after supplementation (P = 4.41 × 10−7), as were 2 additional SNPs, rs11960388 and rs6887869, located in the dimethylglycine dehydrogenase (DMGDH)/betaine-homocysteine S-methyltransferase (BHMT) region (P = 0.01). Alleles of 2 SNPs in the DMGDH/BHMT region associated with greater increases in Se concentrations after supplementation were also strongly associated with higher basal Se concentrations (P = 8.67 × 10−8). Conclusions This first GWAS of responses to Se supplementation in participants of European descent from the Sel/Cel Trial suggests that SNPs in the NEK6 and DMGDH/BHMT regions influence responses to supplementation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Waldiodio Seck ◽  
Davoud Torkamaneh ◽  
François Belzile

Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P &lt; 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.


Sign in / Sign up

Export Citation Format

Share Document