scholarly journals An integrated genomic-transcriptomic approach supports a role for the proto-oncogene BCL3 in atherosclerosis

2015 ◽  
Vol 113 (03) ◽  
pp. 655-663 ◽  
Author(s):  
Giovanna Marchetti ◽  
Domenico Girelli ◽  
Carlotta Zerbinati ◽  
Barbara Lunghi ◽  
Simonetta Friso ◽  
...  

Summaryassociation studies of coronary artery disease (CAD), could include functionally relevant associations. We propose an integrated genomic and transcriptomic approach for unravelling new potential genetic signatures of atherosclerosis. Fifteen among 91 single nucleotide polymorphisms (SNPs) were first selected for association in a sex- and age-adjusted model by examining 510 patients with CAD and myocardial infarction and 388 subjects with normal coronary arteries (CAD-free) in the replication stages of a genome-wide association study. We investigated the expression of 71 genes proximal to the 15 tag-SNPs by two subsequent steps of microarray-based Mrna profiling, the former in vascular smooth muscle cell populations, isolated from non-atherosclerotic and atherosclerotic human carotid portions, and the latter in whole carotid specimens. BCL3 and PVRL2, contiguously located on chromosome 19, and ABCA1, extensively investigated before, were found to be differentially expressed. BCL3 and PVRL2 SNPs were genotyped within a second population of CAD patients (n=442) and compared with CAD-free subjects (n=393). The carriership of the BCL3 rs2965169 G allele was more represented among CAD patients and remained independently associated with CAD after adjustment for all the traditional cardiovascular risk factors (odds ratio=1.70 with 95% confidence interval 1.07–2.71), while the BCL3 rs8100239 A allele correlated with metabolic abnormalities. The upregulation of BCL3 mRNA levels in atherosclerotic tissue samples was consistent with BCL3 protein expression, which was detected by immunostaining in the intima-media of atherosclerotic specimens, but not within non-atherosclerotic ones. Our integrated approach suggests a role for BCL3 in cardiovascular diseases.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 234 ◽  
Author(s):  
Joanne R Chapman ◽  
Maureen A Dowell ◽  
Rosanna Chan ◽  
Robert L Unckless

Dissecting the genetic basis of natural variation in disease response in hosts provides insights into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E. faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single nucleotide polymorphisms associated with six genes with a significant (p < 10−08, corresponding to a false discovery rate of 2.4%) association with survival, none of which were canonical immune genes. To validate the role of these genes in immune defense, their expression was knocked-down using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also known as IM23), in E. faecalis infection response. This study adds to the growing set of association studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in immune defense differ for different pathogens.


2018 ◽  
Vol 109 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Dylan M Williams ◽  
Sara Hägg ◽  
Nancy L Pedersen

ABSTRACT Background Higher circulating antioxidant concentrations are associated with a lower risk of late-onset Alzheimer disease (AD) in observational studies, suggesting that diet-sourced antioxidants may be modifiable targets for reducing disease risk. However, observational evidence is prone to substantial biases that limit causal inference, including residual confounding and reverse causation. Objectives In order to infer whether long-term circulating antioxidant exposure plays a role in AD etiology, we tested the hypothesis that AD risk would be lower in individuals with lifelong, genetically predicted increases in concentrations of 4 circulating antioxidants that are modifiable by diet. Methods Two-sample Mendelian randomization analyses were conducted. First, published genetic association studies were used to identify single-nucleotide polymorphisms (SNPs) that determine variation in circulating ascorbate (vitamin C), β-carotene, retinol (vitamin A), and urate. Second, for each set of SNP data, statistics for genotype associations with AD risk were extracted from data of a genome-wide association study of late-onset AD cases and controls (n = 17,008 and 37,154, respectively). Ratio-of-coefficients and inverse-variance-weighted meta-analyses were the primary methods used to assess the 4 sets of SNP-exposure and SNP-AD associations. Additional analyses assessed the potential impact of bias from pleiotropy on estimates. Results The models suggested that genetically determined differences in circulating ascorbate, retinol, and urate are not associated with differences in AD risk. All estimates were close to the null, with all ORs for AD ≥1 per unit increase in antioxidant exposure (ranging from 1.00 for ascorbate to 1.05 for retinol). There was little evidence to imply that pleiotropy had biased results. Conclusions Our findings suggest that higher exposure to ascorbate, β-carotene, retinol, or urate does not lower the risk of AD. Replication Mendelian randomization studies could assess this further, providing larger AD case-control samples and, ideally, using additional variants to instrument each exposure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hye-Won Cho ◽  
Hyun-Seok Jin ◽  
Yong-Bin Eom

Most previous genome-wide association studies (GWAS) have identified genetic variants associated with anthropometric traits. However, most of the evidence were reported in European populations. Anthropometric traits such as height and body fat distribution are significantly affected by gender and genetic factors. Here we performed GWAS involving 64,193 Koreans to identify the genetic factors associated with anthropometric phenotypes including height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip ratio. We found nine novel single-nucleotide polymorphisms (SNPs) and 59 independent genetic signals in genomic regions that were reported previously. Of the 19 SNPs reported previously, eight genetic variants at RP11-513I15.6 and one genetic variant at the RP11-977G19.10 region and six Asian-specific genetic variants were newly found. We compared our findings with those of previous studies in other populations. Five overlapping genetic regions (PAN2, ANKRD52, RNF41, HGMA1, and C6orf106) had been reported previously but none of the SNPs were independently identified in the current study. Seven of the nine newly found novel loci associated with height in women revealed a statistically significant skeletal expression of quantitative trait loci. Our study provides additional insight into the genetic effects of anthropometric phenotypes in East Asians.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1531
Author(s):  
Yasemin Öner ◽  
Malena Serrano ◽  
Pilar Sarto ◽  
Laura Pilar Iguácel ◽  
María Piquer-Sabanza ◽  
...  

A genome-wide association study (GWAS) was performed to identify new single nucleotide polymorphisms (SNPs) and genes associated with mastitis resistance in Assaf sheep by using the Illumina Ovine Infinium® HD SNP BeadChip (680K). In total, 6173 records from 1894 multiparous Assaf ewes with at least three test day records and aged between 2 and 7 years old were used to estimate a corrected phenotype for somatic cell score (SCS). Then, 192 ewes were selected from the top (n = 96) and bottom (n = 96) tails of the corrected SCS phenotype distribution to be used in a GWAS. Although no significant SNPs were found at the genome level, four SNPs (rs419096188, rs415580501, rs410336647, and rs424642424) were significant at the chromosome level (FDR 10%) in two different regions of OAR19. The SNP rs419096188 was located in intron 1 of the NUP210 and close to the HDAC11 genes (61 kb apart), while the other three SNPs were totally linked and located 171 kb apart from the ARPP21 gene. These three genes were related to the immune system response. These results were validated in two SNPs (rs419096188 and rs424642424) in the total population (n = 1894) by Kompetitive Allele-Specific PCR (KASP) genotyping. Furthermore, rs419096188 was also associated with lactose content.


2020 ◽  
Author(s):  
Ken Batai ◽  
Mario J Trejo ◽  
Yuliang Chen ◽  
Lindsay N Kohler ◽  
Peter Lance ◽  
...  

ABSTRACT Background Selenium (Se) is a trace element that has been linked to many health conditions. Genome-wide association studies (GWAS) have identified variants for blood and toenail Se levels, but no GWAS has been conducted to date on responses to Se supplementation. Objectives A GWAS was performed to identify the single nucleotide polymorphisms (SNPs) associated with changes in Se concentrations after 1 year of supplementation. A GWAS of basal plasma Se concentrations at study entry was conducted to evaluate whether SNPs for Se responses overlap with SNPs for basal Se levels. Methods A total of 428 participants aged 40–80 years of European descent from the Selenium and Celecoxib Trial (Sel/Cel Trial) who received daily supplementation with 200 µg of selenized yeast were included for the GWAS of responses to supplementation. Plasma Se concentrations were measured from blood samples collected at the time of recruitment and after 1 year of supplementation. Linear regression analyses were performed to assess the relationship between each SNP and changes in Se concentrations. We further examined whether the identified SNPs overlapped with those related to basal Se concentrations. Results No SNP was significantly associated with changes in Se concentration at a genome-wide significance level. However, rs56856693, located upstream of the NEK6, was nominally associated with changes in Se concentrations after supplementation (P = 4.41 × 10−7), as were 2 additional SNPs, rs11960388 and rs6887869, located in the dimethylglycine dehydrogenase (DMGDH)/betaine-homocysteine S-methyltransferase (BHMT) region (P = 0.01). Alleles of 2 SNPs in the DMGDH/BHMT region associated with greater increases in Se concentrations after supplementation were also strongly associated with higher basal Se concentrations (P = 8.67 × 10−8). Conclusions This first GWAS of responses to Se supplementation in participants of European descent from the Sel/Cel Trial suggests that SNPs in the NEK6 and DMGDH/BHMT regions influence responses to supplementation.


2021 ◽  
pp. 174749302110062
Author(s):  
Bin Yan ◽  
Jian Yang ◽  
Li Qian ◽  
Fengjie Gao ◽  
Ling Bai ◽  
...  

Background: Observational studies have found an association between visceral adiposity and stroke. Aims: The purpose of this study was to investigate the role and genetic effect of visceral adipose tissue (VAT) accumulation on stroke and its subtypes. Methods: In this two-sample Mendelian randomization (MR) study, genetic variants (221 single nucleotide polymorphisms; P<5×10-8) using as instrumental variables for MR analysis was obtained from a genome-wide association study (GWAS) of VAT. The outcome datasets for stroke and its subtypes were obtained from the MEGASTROKE consortium (up to 67,162 cases and 453,702 controls). MR standard analysis (inverse variance weighted method) was conducted to investigate the effect of genetic liability to visceral adiposity on stroke and its subtypes. Sensitivity analysis (MR-Egger, weighted median, MR-PRESSO) were also utilized to assess horizontal pleiotropy and remove outliers. Multi-variable MR analysis was employed to adjust potential confounders. Results: In the standard MR analysis, genetically determined visceral adiposity (per 1 SD) was significantly associated with a higher risk of stroke (odds ratio [OR] 1.30; 95% confidence interval [CI] 1.21-1.41, P=1.48×10-11), ischemic stroke (OR 1.30; 95% CI 1.20-1.41, P=4.01×10-10), and large artery stroke (OR 1.49; 95% CI 1.22-1.83, P=1.16×10-4). The significant association was also found in sensitivity analysis and multi-variable MR analysis. Conclusions: Genetic liability to visceral adiposity was significantly associated with an increased risk of stroke, ischemic stroke, and large artery stroke. The effect of genetic susceptibility to visceral adiposity on the stroke warrants further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Misbah Razzaq ◽  
Maria Jesus Iglesias ◽  
Manal Ibrahim-Kosta ◽  
Louisa Goumidi ◽  
Omar Soukarieh ◽  
...  

AbstractVenous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 148
Author(s):  
Camilo E. Valenzuela ◽  
Paulina Ballesta ◽  
Sunny Ahmar ◽  
Sajid Fiaz ◽  
Parviz Heidari ◽  
...  

The agricultural and forestry productivity of Mediterranean ecosystems is strongly threatened by the adverse effects of climate change, including an increase in severe droughts and changes in rainfall distribution. In the present study, we performed a genome-wide association study (GWAS) to identify single-nucleotide polymorphisms (SNPs) and haplotype blocks associated with the growth and wood quality of Eucalyptus cladocalyx, a tree species suitable for low-rainfall sites. The study was conducted in a progeny-provenance trial established in an arid site with Mediterranean patterns located in the southern Atacama Desert, Chile. A total of 87 SNPs and 3 haplotype blocks were significantly associated with the 6 traits under study (tree height, diameter at breast height, slenderness coefficient, first bifurcation height, stem straightness, and pilodyn penetration). In addition, 11 loci were identified as pleiotropic through Bayesian multivariate regression and were mainly associated with wood hardness, height, and diameter. In general, the GWAS revealed associations with genes related to primary metabolism and biosynthesis of cell wall components. Additionally, associations coinciding with stress response genes, such as GEM-related 5 and prohibitin-3, were detected. The findings of this study provide valuable information regarding genetic control of morphological traits related to adaptation to arid environments.


Sign in / Sign up

Export Citation Format

Share Document