scholarly journals Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites

Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 68 ◽  
Author(s):  
Dorrik Stow ◽  
Zeinab Smillie

The distinction between turbidites, contourites and hemipelagites in modern and ancient deep-water systems has long been a matter of controversy. This is partly because the processes themselves show a degree of overlap as part of a continuum, so that the deposit characteristics also overlap. In addition, the three facies types commonly occur within interbedded sequences of continental margin deposits. The nature of these end-member processes and their physical parameters are becoming much better known and are summarised here briefly. Good progress has also been made over the past decade in recognising differences between end-member facies in terms of their sedimentary structures, facies sequences, ichnofacies, sediment textures, composition and microfabric. These characteristics are summarised here in terms of standard facies models and the variations from these models that are typically encountered in natural systems. Nevertheless, it must be acknowledged that clear distinction is not always possible on the basis of sedimentary characteristics alone, and that uncertainties should be highlighted in any interpretation. A three-scale approach to distinction for all deep-water facies types should be attempted wherever possible, including large-scale (oceanographic and tectonic setting), regional-scale (architecture and association) and small-scale (sediment facies) observations.

2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2020 ◽  
Vol 28 (8) ◽  
pp. 2657-2674
Author(s):  
Markus Theel ◽  
Peter Huggenberger ◽  
Kai Zosseder

AbstractThe favorable overall conditions for the utilization of groundwater in fluvioglacial aquifers are impacted by significant heterogeneity in the hydraulic conductivity, which is related to small-scale facies changes. Knowledge of the spatial distribution of hydraulically relevant hydrofacies types (HF-types), derived by sedimentological analysis, helps to determine the hydraulic conductivity distribution and thus contribute to understanding the hydraulic dynamics in fluvioglacial aquifers. In particular, the HF-type “open framework gravel (OW)”, which occurs with the HF-type “bimodal gravel (BM)” in BM/OW couplings, has an intrinsically high hydraulic conductivity and significantly impacts hydrogeological challenges such as planning excavation-pit drainage or the prognosis of plumes. The present study investigates the properties and spatial occurrence of HF-types in fluvioglacial deposits at regional scale to derive spatial distribution trends of HF-types, by analyzing 12 gravel pits in the Munich gravel plain (southern Germany) as analogues for outwash plains. The results are compared to the reevaluation of 542 pumping tests. Analysis of the HF-types and the pumping test data shows similar small-scale heterogeneities of the hydraulic conductivity, superimposing large-scale trends. High-permeability BM/OW couples and their dependence on recognizable discharge types in the sedimentary deposits explain sharp-bounded small-scale heterogeneities in the hydraulic conductivity distribution from 9.1 × 10−3 to 2.2 × 10−4 m/s. It is also shown that high values of hydraulic conductivity can be interpolated on shorter distance compared to lower values. While the results of the HF-analysis can be transferred to other fluvioglacial settings (e.g. braided rivers), regional trends must be examined with respect to the surrounding topography.


2016 ◽  
Vol 4 (2) ◽  
pp. 132-148 ◽  
Author(s):  
Francis P. McManamon ◽  
John Doershuk ◽  
William D. Lipe ◽  
Tom McCulloch ◽  
Christopher Polglase ◽  
...  

AbstractPublic agencies at all levels of government and other organizations that manage archaeological resources often face the problem of many undertakings that collectively impact large numbers of individually significant archaeological resources. Such situations arise when an agency is managing a large area, such as a national forest, land management district, park unit, wildlife refuge, or military installation. These situations also may arise in regard to large-scale development projects, such as energy developments, highways, reservoirs, transmission lines, and other major infrastructure projects that cover substantial areas. Over time, the accumulation of impacts from small-scale projects to individual archaeological resources may degrade landscape or regional-scale cultural phenomena. Typically, these impacts are mitigated at the site level without regard to how the impacts to individual resources affect the broader population of resources. Actions to mitigate impacts rarely are designed to do more than avoid resources or ensure some level of data recovery at single sites. Such mitigation activities are incapable of addressing research question at a landscape or regional scale.


2007 ◽  
Vol 572 ◽  
pp. 189-217 ◽  
Author(s):  
M. OZGOREN ◽  
D. ROCKWELL

Interaction of a deep-water wave with a cylinder gives rise to ordered patterns of the flow structure, which are quantitatively characterized using a technique of high-image-density particle image velocimetry. When the cylinder is stationary, the patterns of instantaneous flow structure take on increasingly complex forms for increasing Keulegan--Carpenter number KC. These patterns involve stacking of small-scale vorticity concentrations, as well as large-scale vortex shedding. The time-averaged consequence of these patterns involves, at sufficiently high KC, an array of vorticity concentrations about the cylinder.When the lightly damped cylinder is allowed to undergo bidirectional oscillations, the trajectories can be classified according to ranges of KC. At low values of KC, the trajectory is elliptical, and further increases of KC allow, first of all, both elliptical and in-line trajectories as possibilities, followed by predominantly in-line and figure-of-eight oscillations at the largest value of KC.Representations of the quantitative flow structure, in relation to the instantaneous cylinder position on its oscillation trajectory, show basic classes of patterns. When the trajectory is elliptical, layers of vorticity rotate about the cylinder surface, in accordance with rotation of the relative velocity vector of the wave motion with respect to the oscillating cylinder. Simultaneously, the patterns of streamline topology take the form of large-scale bubbles, which also rotate about the cylinder. When the cylinder trajectory is predominantly in-line with the wave motion, generic classes of vortex formation and shedding can be identified; they include sweeping of previously shed vorticity concentrations past the cylinder to the opposite side. Certain of these patterns are directly analogous to those from the stationary cylinder.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Chuancheng Zhao ◽  
Shuxia Yao ◽  
Shiqiang Zhang ◽  
Haidong Han ◽  
Qiudong Zhao ◽  
...  

Precipitation is one of the important water supplies in the arid and semiarid regions of northwestern China, playing a vital role in maintaining the fragile ecosystem. In remote mountainous area, it is difficult to obtain an accurate and reliable spatialization of the precipitation amount at the regional scale due to the inaccessibility, the sparsity of observation stations, and the complexity of relationships between precipitation and topography. Furthermore, accurate precipitation is important driven data for hydrological models to assess the water balance and water resource for hydrologists. Therefore, the use of satellite remote sensing becomes an important means over mountainous area. Precipitation datasets based on station data or pure satellite data have been increasingly available in spite of several weaknesses. This paper evaluates the usefulness of three precipitation datasets including TRMM 3B43_V6, 3B43_V7, and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation with rain gauge data over Tianshan mountainous area where precipitation data is scarce. The results suggest that precipitation measurements only provided accurate information on a small scale, while the satellite remote sensing of precipitation had obvious advantages in basin scale or large scale especially over remote mountainous area.


2021 ◽  
Author(s):  
Susan Kay ◽  
Arlene L. Avillanosa ◽  
Victoria V. Cheung ◽  
Ngoc Hung Dao ◽  
Benjamin J. Gonzales ◽  
...  

Abstract The seas of Southeast Asia are home to some of the world’s most diverse ecosystems and resources that support the livelihoods and wellbeing of millions of people. Climate change will bring temperature changes, acidification and other environmental change, with uncertain consequences for human and natural systems in the region. We present the first regional-scale projections of change in the marine environment up to the end of 21st century. A coupled physical-biogeochemical model with a resolution of 0.1° (approximately 11 km) was used to create projections of future environmental conditions under two greenhouse gas scenarios, RCP4.5 and RCP8.5. These show a sea that is warming by 1.1–2.9°C through the 21st century, with surface pH falling by up to 0.02 and dissolved oxygen decreasing by 5 to 13 mmol m− 3. Changes for different parts of the region, including four sensitive coastal sites, are presented. The changes reach all parts of the water column and many places are projected to experience conditions well outside the range seen at the start of the century. Altered species distribution and damage to coral reefs resulting from this environmental change would have consequences for biodiversity, for the livelihoods of small-scale fishers and for the food security of coastal communities across the region. Projections of this type are a key tool for communities planning how they will adapt to the challenge of climate change.


2010 ◽  
Vol 6 (S274) ◽  
pp. 159-161
Author(s):  
G. Nigro ◽  
D. Perrone ◽  
P. Veltri

AbstractA self-consistent nonlinear dynamo model is presented. The nonlinear behavior of the plasma at small scale is described by using a MHD shell model for fields fluctuations; this allow us to study the dynamo problem in a large parameter regime which characterizes the dynamo phenomenon in many natural systems and which is beyond the power of supercomputers at today. The model is able to reproduce dynamical situations in which the system can undergo transactions to different dynamo regimes. In one of these the large-scale magnetic field jumps between two states reproducing the magnetic polarity reversals. From the analysis of long time series of reversals we infer results about the statistics of persistence times, revealing the presence of hidden long-time correlations in the chaotic dynamo process.


Author(s):  
C. David Whiteman

Weather phenomena occur over a very broad range of scales of space and time, from the global circulation systems that extend around the earth’s circumference to the small eddies that cause cigarette smoke to swirl and mix with clear air. Each circulation can be described in terms of its approximate horizontal diameter and lifetime. Large-scale weather systems, such as hemispheric wave patterns called Rossby waves, monsoons, high and low pressure centers, and fronts, are called synopticscale weather systems. Temperature, humidity, pressure, and wind measurements collected simultaneously all over the world are used to analyze and forecast the evolution of these systems, which have diameters greater than 200 km (125 mi) and lifetimes of days to months. Mesoscale weather events include diurnal wind systems such as mountain wind systems, like breezes, sea breezes, thunderstorms, and other phenomena with horizontal scales that range from 2 to 200 km (1 to 125 mi) and lifetimes that range from hours to days. Mesoscale meteorologists use networks of surface- based instruments, balloon-borne sounding systems, remote sensing systems (e.g., radar, lidar, and sodar), and aircraft to make observations on these scales. Microscale meteorology focuses on local or small-scale atmospheric phenomena with diameters below 2 km (1 mi) and lifetimes from seconds to hours, including gusts and turbulence, dust devils, thermals, and certain cloud types. Microscale studies are usually confined to the layer of air from the earth’s surface to an altitude where surface effects become negligible (approximately 1000 feet or 300 m at night and 5000 feet or 1500 m during the day). A fourth and less rigorously defined term, the regional scale, denotes circulations and weather events occurring on horizontal scales from 500 to 5000 km (310 to 3100 mi). The regional scale is thus smaller than synoptic scale, but larger than mesoscale. The term is often used to describe events that occur within more or less homogeneous physiographic provinces (e.g., the Pacific Northwest region). Major mountain ranges impact the weather on the synoptic scale. They anchor large-scale pressure systems in the Northern Hemisphere, cause low and high pressure weather systems to form, and produce large-scale seasonal wind systems in Asia and North America.


2006 ◽  
Vol 19 (21) ◽  
pp. 5554-5569 ◽  
Author(s):  
P. Good ◽  
J. Lowe

Abstract Aspects of model emergent behavior and uncertainty in regional- and small-scale effects of increasing CO2 on seasonal (June–August) precipitation are explored. Nineteen different climate models are studied. New methods of comparing multiple climate models reveal a clearer and more impact-relevant view of precipitation projections for the current century. First, the importance of small spatial scales in multimodel projections is demonstrated. Local trends can be much larger than or even have an opposing sign to the large-scale regional averages used in previous studies. Small-scale effects of increasing CO2 and natural internal variability both play important roles here. These small-scale features make multimodel comparisons difficult for precipitation. New methods that allow information from small spatial scales to be usefully compared across an ensemble of multiple models are presented. The analysis philosophy of this study works with statistical distributions of small-scale variations within climatological regions. A major result of this work is a set of emergent relationships coupling the small- and regional-scale effects of CO2 on precipitation trends. Within each region, a single relationship fits the ensemble of 19 different climate models. Using these relationships, a surprisingly large part of the intermodel variance in small-scale effects of CO2 is explainable simply by the intermodel variance in the regional mean (a form of pattern scaling). Different regions show distinctly different relationships. These relationships imply that regional mean results are still useful, as long as the interregional variation in their relationship with impact-relevant extreme trends is recognized. These relationships are used to present a clear but rich picture of an aspect of model uncertainty, characterized by the intermodel spread in seasonal precipitation trends, including information from small spatial scales.


1988 ◽  
Vol 25 (10) ◽  
pp. 1579-1594 ◽  
Author(s):  
S. Gardiner ◽  
R. N. Hiscott

The lower part of the Hadrynian Conception Group is exposed in coastal outcrops near Holyrood Pond, St. Mary's Bay. Deep-water sediments of the Mall Bay Formation (>800 m) are overlain by glaciogenic debris flows of the Gaskiers Formation (250–300 m) and then by renewed turbidite deposition in the lower part of the Drook Formation (1000 m examined; formation thickness 1500 m). The main facies in the Mall Bay and Drook formations are thinly to very thickly bedded sand stone–mudstone couplets (turbidites), amalgamated in the thicker and coarser beds, and graded-stratified siltstones–mudstones. These are interpreted as deposits on an extensive basin floor and on the lower and middle parts of small-scale submarine fans that prograded from fringing volcanic islands. Paleocurrent data indicate a complex paleogeography dominated by active volcanic islands, probably like some modern volcanic arcs. The Gaskiers Formation was generated by glaciation of these islands.The Malll Bay Formation contains lenticular and wavy bedded siltstones–mudstones interpreted as the deposits of bottom currents, perhaps flowing parallel to the contours of the volcanic islands. In Phanerozoic sediments, bottom-current deposits in this setting would probably be thoroughly bioturbated.


Sign in / Sign up

Export Citation Format

Share Document