scholarly journals Validation of the Accuracy of Different Precipitation Datasets over Tianshan Mountainous Area

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Chuancheng Zhao ◽  
Shuxia Yao ◽  
Shiqiang Zhang ◽  
Haidong Han ◽  
Qiudong Zhao ◽  
...  

Precipitation is one of the important water supplies in the arid and semiarid regions of northwestern China, playing a vital role in maintaining the fragile ecosystem. In remote mountainous area, it is difficult to obtain an accurate and reliable spatialization of the precipitation amount at the regional scale due to the inaccessibility, the sparsity of observation stations, and the complexity of relationships between precipitation and topography. Furthermore, accurate precipitation is important driven data for hydrological models to assess the water balance and water resource for hydrologists. Therefore, the use of satellite remote sensing becomes an important means over mountainous area. Precipitation datasets based on station data or pure satellite data have been increasingly available in spite of several weaknesses. This paper evaluates the usefulness of three precipitation datasets including TRMM 3B43_V6, 3B43_V7, and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation with rain gauge data over Tianshan mountainous area where precipitation data is scarce. The results suggest that precipitation measurements only provided accurate information on a small scale, while the satellite remote sensing of precipitation had obvious advantages in basin scale or large scale especially over remote mountainous area.

2021 ◽  
Vol 13 (22) ◽  
pp. 4709
Author(s):  
Haiyang Shi ◽  
Qun Pan ◽  
Geping Luo ◽  
Olaf Hellwich ◽  
Chunbo Chen ◽  
...  

Understanding the impacts of environmental factors on spatial–temporal and large-scale rodent distribution is important for rodent damage prevention. Investigating rat hole density (RHD) is one of the most effective methods to obtain the intensity of rodent damage. However, most of the previous field surveys or UAV-based remote sensing methods can only evaluate small-scale RHD and its influencing factors. However, these studies did not consider large-scale temporal and spatial heterogeneity. Therefore, we collected small-scale and in situ measurement records of RHD on the northern slope of the Tien Shan Mountains in Xinjiang (NTXJ), China, from 1982 to 2015, and then used correlation analysis and Bayesian network (BN) to analyze the environmental impacts on large-scale RHD with satellite remote sensing data such as the GIMMS NDVI product. The results show that the built BN can better quantify causality in the environmental mechanism modeling of RHD. The NDVI and LAI data from satellite remote sensing are important to the spatial–temporal RHD distribution and the mapping in the future. In regions with an elevation higher than 600 m (UPR) and lower than 600 m (LWR) of NTXJ, there are significant differences in the driving mechanism patterns of RHD, which are dependent on the elevation variation. In LWR, vegetation conditions have a weaker impact on RHD than UPR. It is possibly due to the Artemisia eaten by the dominant species Lagurus luteus (LL) in UPR being more sensitive to precipitation and temperature if compared with the Haloxylon ammodendron eaten by the Rhombomys opimus (RO) in LWR. In LWR, grazing intensity is more strongly and positively correlated to RHD than UPR, possibly due to both winter grazing and RO dependency on vegetation distribution; moreover, in UPR, sheep do not feed Artemisia as the main food, and the total vegetation is sufficient for sheep and LL to coexist. Under the different conditions of water availability of LWR and UPR, grazing may affect the ratio of aboveground and underground biomass by photosynthate allocation, thereby affecting the distribution of RHD. In extremely dry years, the RHD of LWR and UPR may have an indirect interactive relation due to changes in grazing systems.


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 397
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Forest sustainable management aims to maintain the income of woody goods for companies, together with preserving non-productive functions as a benefit for the community. Due to the progress in platforms and sensors and the opening of the dedicated market, unmanned aerial vehicle–remote sensing (UAV–RS) is improving its key role in the forestry sector as a tool for sustainable management. The use of UAV (Unmanned Aerial Vehicle) in precision forestry has exponentially increased in recent years, as demonstrated by more than 600 references published from 2018 until mid-2020 that were found in the Web of Science database by searching for “UAV”+“forest”. This result is even more surprising when compared with similar research for “UAV”+“agriculture”, from which emerge about 470 references. This shows how UAV–RS research forestry is gaining increasing popularity. In Part II of this review, analyzing the main findings of the reviewed papers (227), numerous strengths emerge concerning research technical issues. UAV–RS is fully applicated for obtaining accurate information from practical parameters (height, diameter at breast height (DBH), and biomass). Research effectiveness and soundness demonstrate that UAV–RS is now ready to be applied in a real management context. Some critical issues and barriers in transferring research products are also evident, namely,(1) hyperspectral sensors are poorly used, and their novel applications should be based on the capability of acquiring tree spectral signature especially for pest and diseases detection, (2) automatic processes for image analysis are poorly flexible or based on proprietary software at the expense of flexible and open-source tools that can foster researcher activities and support technology transfer among all forestry stakeholders, and (3) a clear lack exist in sensors and platforms interoperability for large-scale applications and for enabling data interoperability.


2018 ◽  
Vol 15 (16) ◽  
pp. 5203-5219 ◽  
Author(s):  
Guillaume Rousset ◽  
Florian De Boissieu ◽  
Christophe E. Menkes ◽  
Jérôme Lefèvre ◽  
Robert Frouin ◽  
...  

Abstract. Trichodesmium is the major nitrogen-fixing species in the western tropical South Pacific (WTSP) region, a hot spot of diazotrophy. Due to the paucity of in situ observations, remote-sensing methods for detecting Trichodesmium presence on a large scale have been investigated to assess the regional-to-global impact of this organism on primary production and carbon cycling. A number of algorithms have been developed to identify Trichodesmium surface blooms from space, but determining with confidence their accuracy has been difficult, chiefly because of the scarcity of sea-truth information at the time of satellite overpass. Here, we use a series of new cruises as well as airborne surveys over the WTSP to evaluate their ability to detect Trichodesmium surface blooms in the satellite imagery. The evaluation, performed on MODIS data at 250 m and 1 km resolution acquired over the region, shows limitations due to spatial resolution, clouds, and atmospheric correction. A new satellite-based algorithm is designed to alleviate some of these limitations, by exploiting optimally spectral features in the atmospherically corrected reflectance at 531, 645, 678, 748, and 869 nm. This algorithm outperforms former ones near clouds, limiting false positive detection and allowing regional-scale automation. Compared with observations, 80 % of the detected mats are within a 2 km range, demonstrating the good statistical skill of the new algorithm. Application to MODIS imagery acquired during the February-March 2015 OUTPACE campaign reveals the presence of surface blooms northwest and east of New Caledonia and near 20∘ S–172∘ W in qualitative agreement with measured nitrogen fixation rates. Improving Trichodesmium detection requires measuring ocean color at higher spectral and spatial (<250 m) resolution than MODIS, taking into account environment properties (e.g., wind, sea surface temperature), fluorescence, and spatial structure of filaments, and a better understanding of Trichodesmium dynamics, including aggregation processes to generate surface mats. Such sub-mesoscale aggregation processes for Trichodesmium are yet to be understood.


2011 ◽  
Vol 90-93 ◽  
pp. 2836-2839 ◽  
Author(s):  
Jian Cui ◽  
Dong Ling Ma ◽  
Ming Yang Yu ◽  
Ying Zhou

In order to extract ground information more accurately, it is important to find an image segmentation method to make the segmented features match the ground objects. We proposed an image segmentation method based on mean shift and region merging. With this method, we first segmented the image by using mean shift method and small-scale parameters. According to the region merging homogeneity rule, image features were merged and large-scale image layers were generated. What’s more, Multi-level image object layers were created through scaling method. The test of segmenting remote sensing images showed that the method was effective and feasible, which laid a foundation for object-oriented information extraction.


Author(s):  
Nathalie Pettorelli

This chapter provides an overview of how satellite remote sensing can help map the occurrence, and risk of occurrence, of several environmental disturbances; assess the extent of the associated damages; and monitor the recovery of the areas impacted by these disturbances. It particularly focuses on floods, wild fires, droughts, frost, extreme winter warming events, infestations and blooms, and bleaching events, as these are all well-known natural disturbances likely to change in frequency of occurrence and intensity over the coming decades. Through the use of examples, this chapter demonstrates how the utility of satellite remote sensing resides in the ability it provides to separate and characterise (i.e. through form, intensity, and trajectory) disturbances and responses at various spatial and temporal scales, thereby facilitating ecological knowledge expansion and the identification of relevant management actions. In particular, this contribution shows how satellites offer multiple opportunities to gain accurate information on the location, spatial extent, and duration of disturbances at the continental scale, which is needed to evaluate the ecosystem impacts of land cover changes due to, for example, wild fire, insect epidemics, and flooding, thereby reducing uncertainties in our ability to model global carbon budgets.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 68 ◽  
Author(s):  
Dorrik Stow ◽  
Zeinab Smillie

The distinction between turbidites, contourites and hemipelagites in modern and ancient deep-water systems has long been a matter of controversy. This is partly because the processes themselves show a degree of overlap as part of a continuum, so that the deposit characteristics also overlap. In addition, the three facies types commonly occur within interbedded sequences of continental margin deposits. The nature of these end-member processes and their physical parameters are becoming much better known and are summarised here briefly. Good progress has also been made over the past decade in recognising differences between end-member facies in terms of their sedimentary structures, facies sequences, ichnofacies, sediment textures, composition and microfabric. These characteristics are summarised here in terms of standard facies models and the variations from these models that are typically encountered in natural systems. Nevertheless, it must be acknowledged that clear distinction is not always possible on the basis of sedimentary characteristics alone, and that uncertainties should be highlighted in any interpretation. A three-scale approach to distinction for all deep-water facies types should be attempted wherever possible, including large-scale (oceanographic and tectonic setting), regional-scale (architecture and association) and small-scale (sediment facies) observations.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2020 ◽  
Vol 28 (8) ◽  
pp. 2657-2674
Author(s):  
Markus Theel ◽  
Peter Huggenberger ◽  
Kai Zosseder

AbstractThe favorable overall conditions for the utilization of groundwater in fluvioglacial aquifers are impacted by significant heterogeneity in the hydraulic conductivity, which is related to small-scale facies changes. Knowledge of the spatial distribution of hydraulically relevant hydrofacies types (HF-types), derived by sedimentological analysis, helps to determine the hydraulic conductivity distribution and thus contribute to understanding the hydraulic dynamics in fluvioglacial aquifers. In particular, the HF-type “open framework gravel (OW)”, which occurs with the HF-type “bimodal gravel (BM)” in BM/OW couplings, has an intrinsically high hydraulic conductivity and significantly impacts hydrogeological challenges such as planning excavation-pit drainage or the prognosis of plumes. The present study investigates the properties and spatial occurrence of HF-types in fluvioglacial deposits at regional scale to derive spatial distribution trends of HF-types, by analyzing 12 gravel pits in the Munich gravel plain (southern Germany) as analogues for outwash plains. The results are compared to the reevaluation of 542 pumping tests. Analysis of the HF-types and the pumping test data shows similar small-scale heterogeneities of the hydraulic conductivity, superimposing large-scale trends. High-permeability BM/OW couples and their dependence on recognizable discharge types in the sedimentary deposits explain sharp-bounded small-scale heterogeneities in the hydraulic conductivity distribution from 9.1 × 10−3 to 2.2 × 10−4 m/s. It is also shown that high values of hydraulic conductivity can be interpolated on shorter distance compared to lower values. While the results of the HF-analysis can be transferred to other fluvioglacial settings (e.g. braided rivers), regional trends must be examined with respect to the surrounding topography.


2019 ◽  
Vol 865 ◽  
pp. 681-719
Author(s):  
Catherine A. Vreugdenhil ◽  
Bishakhdatta Gayen ◽  
Ross W. Griffiths

Direct numerical simulations are used to investigate the nature of fully resolved small-scale convection and its role in large-scale circulation in a rotating $f$-plane rectangular basin with imposed surface temperature difference. The large-scale circulation has a horizontal geostrophic component and a deep vertical overturning. This paper focuses on convective circulation with no wind stress, and buoyancy forcing sufficiently strong to ensure turbulent convection within the thermal boundary layer (horizontal Rayleigh numbers $Ra\approx 10^{12}{-}10^{13}$). The dynamics are found to depend on the value of a convective Rossby number, $Ro_{\unicode[STIX]{x0394}T}$, which represents the strength of buoyancy forcing relative to Coriolis forces. Vertical convection shifts from a mean endwall plume under weak rotation ($Ro_{\unicode[STIX]{x0394}T}>10^{-1}$) to ‘open ocean’ chimney convection plus mean vertical plumes at the side boundaries under strong rotation ($Ro_{\unicode[STIX]{x0394}T}<10^{-1}$). The overall heat throughput, horizontal gyre transport and zonally integrated overturning transport are then consistent with scaling predictions for flow constrained by thermal wind balance in the thermal boundary layer coupled to vertical advection–diffusion balance in the boundary layer. For small Rossby numbers relevant to circulation in an ocean basin, vertical heat transport from the surface layer into the deep interior occurs mostly in ‘open ocean’ chimney convection while most vertical mass transport is against the side boundaries. Both heat throughput and the mean circulation (in geostrophic gyres, boundary currents and overturning) are reduced by geostrophic constraints.


Sign in / Sign up

Export Citation Format

Share Document