scholarly journals Machine Learning to Predict the Progression of Bone Mass Loss Associated with Personal Characteristics and a Metabolic Syndrome Scoring Index

Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 948
Author(s):  
Chao-Hsin Cheng ◽  
Ching-Yuan Lin ◽  
Tsung-Hsun Cho ◽  
Chih-Ming Lin

A relationship exists between metabolic syndrome (MetS) and human bone health; however, whether the combination of demographic, lifestyle, and socioeconomic factors that are associated with MetS development also simultaneously affects bone density remains unclear. Using a machine learning approach, the current study aimed to estimate the usefulness of predicting bone mass loss using these potentially related factors. The present study included a sample of 23,497 adults who routinely visited a health screening center at a large health center at least once during each of three 3-year stages (i.e., 2006–2008, 2009–2011, and 2012–2014). The demographic, socioeconomic, lifestyle characteristics, body mass index (BMI), and MetS scoring index recorded during the first 3-year stage were used to predict the subsequent occurrence of osteopenia using a non-concurrence design. A concurrent prediction was also performed using the features recorded from the same 3-year stage as the predicted outcome. Machine learning algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were applied to build predictive models using a unique feature set. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, precision, and F1 score were used to evaluate the predictive performances of the models. The XGBoost model presented the best predictive performance among the non-concurrence models. This study suggests that the ensemble learning model with a MetS severity score can be used to predict the progression of osteopenia. The inclusion of an individual’s features into a predictive model over time is suggested for future studies.

Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Author(s):  
R. Madhuri ◽  
S. Sistla ◽  
K. Srinivasa Raju

Abstract Assessing floods and their likely impact in climate change scenarios will enable the facilitation of sustainable management strategies. In this study, five machine learning (ML) algorithms, namely (i) Logistic Regression, (ii) Support Vector Machine, (iii) K-nearest neighbor, (iv) Adaptive Boosting (AdaBoost) and (v) Extreme Gradient Boosting (XGBoost), were tested for Greater Hyderabad Municipal Corporation (GHMC), India, to evaluate their clustering abilities to classify locations (flooded or non-flooded) for climate change scenarios. A geo-spatial database, with eight flood influencing factors, namely, rainfall, elevation, slope, distance from nearest stream, evapotranspiration, land surface temperature, normalised difference vegetation index and curve number, was developed for 2000, 2006 and 2016. XGBoost performed the best, with the highest mean area under curve score of 0.83. Hence, XGBoost was adopted to simulate the future flood locations corresponding to probable highest rainfall events under four Representative Concentration Pathways (RCPs), namely, 2.6, 4.5, 6.0 and 8.5 along with other flood influencing factors for 2040, 2056, 2050 and 2064, respectively. The resulting ranges of flood risk probabilities are predicted as 39–77%, 16–39%, 42–63% and 39–77% for the respective years.


2021 ◽  
Author(s):  
Mandana Modabbernia ◽  
Heather C Whalley ◽  
David Glahn ◽  
Paul M. Thompson ◽  
Rene S. Kahn ◽  
...  

Application of machine learning algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the machine learning approach in estimating brain-age in children and adolescents is important because age-related brain changes in these age-groups are dynamic. However, the comparative performance of the multiple machine learning algorithms available has not been systematically appraised. To address this gap, the present study evaluated the accuracy (Mean Absolute Error; MAE) and computational efficiency of 21 machine learning algorithms using sMRI data from 2,105 typically developing individuals aged 5 to 22 years from five cohorts. The trained models were then tested in an independent holdout datasets, comprising 4,078 pre-adolescents (aged 9-10 years). The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, and sample size. The best performing algorithms were Extreme Gradient Boosting (MAE of 1.25 years for females and 1.57 years for males), Random Forest Regression (MAE of 1.23 years for females and 1.65 years for males) and Support Vector Regression with Radial Basis Function Kernel (MAE of 1.47 years for females and 1.72 years for males) which had acceptable and comparable computational efficiency. Findings of the present study could be used as a guide for optimizing methodology when quantifying age-related changes during development.


2022 ◽  
Vol 355 ◽  
pp. 03008
Author(s):  
Yang Zhang ◽  
Lei Zhang ◽  
Yabin Ma ◽  
Jinsen Guan ◽  
Zhaoxia Liu ◽  
...  

In this study, an electronic nose model composed of seven kinds of metal oxide semiconductor sensors was developed to distinguish the milk source (the dairy farm to which milk belongs), estimate the content of milk fat and protein in milk, to identify the authenticity and evaluate the quality of milk. The developed electronic nose is a low-cost and non-destructive testing equipment. (1) For the identification of milk sources, this paper uses the method of combining the electronic nose odor characteristics of milk and the component characteristics to distinguish different milk sources, and uses Principal Component Analysis (PCA) and Linear Discriminant Analysis , LDA) for dimensionality reduction analysis, and finally use three machine learning algorithms such as Logistic Regression (LR), Support Vector Machine (SVM) and Random Forest (RF) to build a milk source (cow farm) Identify the model and evaluate and compare the classification effects. The experimental results prove that the classification effect of the SVM-LDA model based on the electronic nose odor characteristics is better than other single feature models, and the accuracy of the test set reaches 91.5%. The RF-LDA and SVM-LDA models based on the fusion feature of the two have the best effect Set accuracy rate is as high as 96%. (2) The three algorithms, Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost) and Random Forest (RF), are used to construct the electronic nose odor data for milk fat rate and protein rate. The method of estimating the model, the results show that the RF model has the best estimation performance( R2 =0.9399 for milk fat; R2=0.9301for milk protein). And it prove that the method proposed in this study can improve the estimation accuracy of milk fat and protein, which provides a technical basis for predicting the quality of dairy products.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 45 ◽  
Author(s):  
Huixiang Liu ◽  
Qing Li ◽  
Bin Yan ◽  
Lei Zhang ◽  
Yu Gu

In this study, a portable electronic nose (E-nose) prototype is developed using metal oxide semiconductor (MOS) sensors to detect odors of different wines. Odor detection facilitates the distinction of wines with different properties, including areas of production, vintage years, fermentation processes, and varietals. Four popular machine learning algorithms—extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and backpropagation neural network (BPNN)—were used to build identification models for different classification tasks. Experimental results show that BPNN achieved the best performance, with accuracies of 94% and 92.5% in identifying production areas and varietals, respectively; and SVM achieved the best performance in identifying vintages and fermentation processes, with accuracies of 67.3% and 60.5%, respectively. Results demonstrate the effectiveness of the developed E-nose, which could be used to distinguish different wines based on their properties following selection of an optimal algorithm.


2020 ◽  
Vol 12 (14) ◽  
pp. 2234 ◽  
Author(s):  
Mostafa Emadi ◽  
Ruhollah Taghizadeh-Mehrjardi ◽  
Ali Cherati ◽  
Majid Danesh ◽  
Amir Mosavi ◽  
...  

Estimation of the soil organic carbon (SOC) content is of utmost importance in understanding the chemical, physical, and biological functions of the soil. This study proposes machine learning algorithms of support vector machines (SVM), artificial neural networks (ANN), regression tree, random forest (RF), extreme gradient boosting (XGBoost), and conventional deep neural network (DNN) for advancing prediction models of SOC. Models are trained with 1879 composite surface soil samples, and 105 auxiliary data as predictors. The genetic algorithm is used as a feature selection approach to identify effective variables. The results indicate that precipitation is the most important predictor driving 14.9% of SOC spatial variability followed by the normalized difference vegetation index (12.5%), day temperature index of moderate resolution imaging spectroradiometer (10.6%), multiresolution valley bottom flatness (8.7%) and land use (8.2%), respectively. Based on 10-fold cross-validation, the DNN model reported as a superior algorithm with the lowest prediction error and uncertainty. In terms of accuracy, DNN yielded a mean absolute error of 0.59%, a root mean squared error of 0.75%, a coefficient of determination of 0.65, and Lin’s concordance correlation coefficient of 0.83. The SOC content was the highest in udic soil moisture regime class with mean values of 3.71%, followed by the aquic (2.45%) and xeric (2.10%) classes, respectively. Soils in dense forestlands had the highest SOC contents, whereas soils of younger geological age and alluvial fans had lower SOC. The proposed DNN (hidden layers = 7, and size = 50) is a promising algorithm for handling large numbers of auxiliary data at a province-scale, and due to its flexible structure and the ability to extract more information from the auxiliary data surrounding the sampled observations, it had high accuracy for the prediction of the SOC base-line map and minimal uncertainty.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 713 ◽  
Author(s):  
Aliva Nanda ◽  
Sumit Sen ◽  
Awshesh Nath Sharma ◽  
K. P. Sudheer

Soil temperature plays an important role in understanding hydrological, ecological, meteorological, and land surface processes. However, studies related to soil temperature variability are very scarce in various parts of the world, especially in the Indian Himalayan Region (IHR). Thus, this study aims to analyze the spatio-temporal variability of soil temperature in two nested hillslopes of the lesser Himalaya and to check the efficiency of different machine learning algorithms to estimate soil temperature in the data-scarce region. To accomplish this goal, grassed (GA) and agro-forested (AgF) hillslopes were instrumented with Odyssey water level and decagon soil moisture and temperature sensors. The average soil temperature of the south aspect hillslope (i.e., GA hillslope) was higher than the north aspect hillslope (i.e., AgF hillslope). After analyzing 40 rainfall events from both hillslopes, it was observed that a rainfall duration of greater than 7.5 h or an event with an average rainfall intensity greater than 7.5 mm/h results in more than 2 °C soil temperature drop. Further, a drop in soil temperature less than 1 °C was also observed during very high-intensity rainfall which has a very short event duration. During the rainy season, the soil temperature drop of the GA hillslope is higher than the AgF hillslope as the former one infiltrates more water. This observation indicates the significant correlation between soil moisture rise and soil temperature drop. The potential of four machine learning algorithms was also explored in predicting soil temperature under data-scarce conditions. Among the four machine learning algorithms, an extreme gradient boosting system (XGBoost) performed better for both the hillslopes followed by random forests (RF), multilayer perceptron (MLP), and support vector machine (SVMs). The addition of rainfall to meteorological and meteorological + soil moisture datasets did not improve the models considerably. However, the addition of soil moisture to meteorological parameters improved the model significantly.


2020 ◽  
Author(s):  
Ravindra Kumar Singh ◽  
Harsh Kumar Verma

Abstract The extensive usage of social media polarity analysis claims the need for real-time analytics and runtime outcomes on dashboards. In data analytics, only 30% of the time is consumed in modeling and evaluation stages and 70% is consumed in data engineering tasks. There are lots of machine learning algorithms to achieve a desirable outcome in prediction points of view, but they lack in handling data and their transformation so-called data engineering tasks, and reducing its time remained still challenging. The contribution of this research paper is to encounter the mentioned challenges by presenting a parallelly, scalable, effective, responsive and fault-tolerant framework to perform end-to-end data analytics tasks in real-time and batch-processing manner. An experimental analysis on Twitter posts supported the claims and signifies the benefits of parallelism of data processing units. This research has highlighted the importance of processing mentioned URLs and embedded images along with post content to boost the prediction efficiency. Furthermore, this research additionally provided a comparison of naive Bayes, support vector machines, extreme gradient boosting and long short-term memory (LSTM) machine learning techniques for sentiment analysis on Twitter posts and concluded LSTM as the most effective technique in this regard.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 323
Author(s):  
Thaís A.R. Ramos ◽  
Nilbson R.O. Galindo ◽  
Raúl Arias-Carrasco ◽  
Cecília F. da Silva ◽  
Vinicius Maracaja-Coutinho ◽  
...  

Non-coding RNAs (ncRNAs) are important players in the cellular regulation of organisms from different kingdoms. One of the key steps in ncRNAs research is the ability to distinguish coding/non-coding sequences. We applied seven machine learning algorithms (Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Random Forest, Extreme Gradient Boosting, Neural Networks and Deep Learning) through model organisms from different evolutionary branches to create a stand-alone and web server tool (RNAmining) to distinguish coding and non-coding sequences. Firstly, we used coding/non-coding sequences downloaded from Ensembl (April 14th, 2020). Then, coding/non-coding sequences were balanced, had their trinucleotides count analysed (64 features) and we performed a normalization by the sequence length, resulting in total of 180 models. The machine learning algorithms validations were performed using 10-fold cross-validation and we selected the algorithm with the best results (eXtreme Gradient Boosting) to implement at RNAmining. Best F1-scores ranged from 97.56% to 99.57% depending on the organism. Moreover, we produced a benchmarking with other tools already in literature (CPAT, CPC2, RNAcon and TransDecoder) and our results outperformed them. Both stand-alone and web server versions of RNAmining are freely available at https://rnamining.integrativebioinformatics.me/.


Sign in / Sign up

Export Citation Format

Share Document