scholarly journals Spatio-Temporal Variation in the Concentration of Inhalable Particulate Matter (PM10) in Uganda

Author(s):  
Silver Onyango ◽  
Beth Parks ◽  
Simon Anguma ◽  
Qingyu Meng

Long-term particulate matter (PM10) measurements were conducted during the period January 2016 to September 2017 at three sites in Uganda (Mbarara, Kyebando, and Rubindi) representing a wide range of urbanization. Spatial, temporal and diurnal variations are assessed in this paper. Particulate matter (PM10) samples were collected for 24-h periods on PTFE filters using a calibrated pump and analyzed gravimetrically to determine the average density. Particulate levels were monitored simultaneously using a light scattering instrument to acquire real time data from which diurnal variations were assessed. The PM10 levels averaged over the sampling period at Mbarara, Kyebando, and Rubindi were 5.8, 8.4, and 6.5 times higher than the WHO annual air quality guideline of 20 µg·m−3, and values exceeded the 24-h mean PM10 guideline of 50 µg·m−3 on 83, 100, and 86% of the sampling days. Higher concentrations were observed during dry seasons at all sites. Seasonal differences were statistically significant at Rubindi and Kyebando. Bimodal peaks were observed in the diurnal analysis with higher morning peaks at Mbarara and Kyebando, which points to the impact of traffic sources, while the higher evening peak at Rubindi points to the influence of dust suspension, roadside cooking and open-air waste burning. Long-term measurement showed unhealthy ambient air in all three locations tested in Uganda, with significant spatial and seasonal differences.

2019 ◽  
Vol 11 (21) ◽  
pp. 5998
Author(s):  
Zhou ◽  
Liu ◽  
Zhou ◽  
Xia

In the context of ecological civil construction in China, afforestation is highly valued. Planting trees can improve air quality in China's large cities. However, there is a lack of scientific analysis quantifying the impact urban forest scale has on the air quality, and what scale is advisable. The problem still exists of subjective decision-making in afforestation. Similar studies have rarely analyzed the long-term effect research of urban forests on air improvement. Using as an example, the city of Wuhan, this paper identifies the regularity between particulate matter concentration and adsorption of sample leaves, and establishes a system dynamics model of "economy, energy and atmospheric environment.” By combining this regularity with the model, the long-term impact of forest scale on particulate matter and atmospheric environment was simulated. The results show that if the forest coverage rate reaches at least 30%, the annual average concentrations of inhalable particulate matter (PM10) and fine particulate matter (PM2.5) can both reach the Grade I limit of national Ambient Air Quality Standard by 2050. The current forest cover is 22.9% of the administrative area. Increasing the forest cover by 600 km2 would increase this percentage to 30% of the total area. In the long run (by the year 2050), however, we showed that this increase would only reduce the annual concentration of PM2.5 and PM10 by 1–2%. Therefore, about 90% of the concentration reduction would still rely on the traditional emission reduction measures. More other ecological functions of forests should be considered in afforestation plan.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


2020 ◽  
Vol 41 (S1) ◽  
pp. s258-s259
Author(s):  
James Harrigan ◽  
Ebbing Lautenbach ◽  
Emily Reesey ◽  
Magda Wernovsky ◽  
Pam Tolomeo ◽  
...  

Background: Clinically diagnosed ventilator-associated pneumonia (VAP) is common in the long-term acute-care hospital (LTACH) setting and may contribute to adverse ventilator-associated events (VAEs). Pseudomonas aeruginosa is a common causative organism of VAP. We evaluated the impact of respiratory P. aeruginosa colonization and bacterial community dominance, both diagnosed and undiagnosed, on subsequent P. aeruginosa VAP and VAE events during long-term acute care. Methods: We enrolled 83 patients on LTACH admission for ventilator weaning, performed longitudinal sampling of endotracheal aspirates followed by 16S rRNA gene sequencing (Illumina HiSeq), and bacterial community profiling (QIIME2). Statistical analysis was performed with R and Stan; mixed-effects models were fit to relate the abundance of respiratory Psa on admission to clinically diagnosed VAP and VAE events. Results: Of the 83 patients included, 12 were diagnosed with P. aeruginosa pneumonia during the 14 days prior to LTACH admission (known P. aeruginosa), and 22 additional patients received anti–P. aeruginosa antibiotics within 48 hours of admission (suspected P. aeruginosa); 49 patients had no known or suspected P. aeruginosa (unknown P. aeruginosa). Among the known P. aeruginosa group, all 12 patients had P. aeruginosa detectable by 16S sequencing, with elevated admission P. aeruginosa proportional abundance (median, 0.97; IQR, 0.33–1). Among the suspected P. aeruginosa group, all 22 patients had P. aeruginosa detectable by 16S sequencing, with a wide range of admission P. aeruginosa proportional abundance (median, 0.0088; IQR, 0.00012–0.31). Of the 49 patients in the unknown group, 47 also had detectable respiratory Psa, and many had high P. aeruginosa proportional abundance at admission (median, 0.014; IQR, 0.00025–0.52). Incident P. aeruginosa VAP was observed within 30 days in 4 of the known P. aeruginosa patients (33.3%), 5 of the suspected P. aeruginosa patients (22.7%), and 8 of the unknown P. aeruginosa patients (16.3%). VAE was observed within 30 days in 1 of the known P. aeruginosa patients (8.3%), 2 of the suspected P. aeruginosa patients (9.1%), and 1 of the unknown P. aeruginosa patients (2%). Admission P. aeruginosa abundance was positively associated with VAP and VAE risk in all groups, but the association only achieved statistical significance in the unknown group (type S error <0.002 for 30-day VAP and <0.011 for 30-day VAE). Conclusions: We identified a high prevalence of unrecognized respiratory P. aeruginosa colonization among patients admitted to LTACH for weaning from mechanical ventilation. The admission P. aeruginosa proportional abundance was strongly associated with increased risk of incident P. aeruginosa VAP among these patients.Funding: NoneDisclosures: None


2021 ◽  
Vol 13 (2) ◽  
pp. 723
Author(s):  
Antti Kurvinen ◽  
Arto Saari ◽  
Juhani Heljo ◽  
Eero Nippala

It is widely agreed that dynamics of building stocks are relatively poorly known even if it is recognized to be an important research topic. Better understanding of building stock dynamics and future development is crucial, e.g., for sustainable management of the built environment as various analyses require long-term projections of building stock development. Recognizing the uncertainty in relation to long-term modeling, we propose a transparent calculation-based QuantiSTOCK model for modeling building stock development. Our approach not only provides a tangible tool for understanding development when selected assumptions are valid but also, most importantly, allows for studying the sensitivity of results to alternative developments of the key variables. Therefore, this relatively simple modeling approach provides fruitful grounds for understanding the impact of different key variables, which is needed to facilitate meaningful debate on different housing, land use, and environment-related policies. The QuantiSTOCK model may be extended in numerous ways and lays the groundwork for modeling the future developments of building stocks. The presented model may be used in a wide range of analyses ranging from assessing housing demand at the regional level to providing input for defining sustainable pathways towards climate targets. Due to the availability of high-quality data, the Finnish building stock provided a great test arena for the model development.


Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


Author(s):  
Marianna Rita Stancampiano ◽  
Kentaro Suzuki ◽  
Stuart O’Toole ◽  
Gianni Russo ◽  
Gen Yamada ◽  
...  

Abstract In the newborn, penile length is determined by a number of androgen dependent and independent factors. The current literature suggests that there are inter-racial differences in stretched penile length in the newborn and although congenital micropenis should be defined as a stretched penile length of less than 2.5SDS of the mean for the corresponding population and gestation, a pragmatic approach would be to evaluate all boys with a stretched penile length below 2 cm, as congenital micropenis can be a marker for a wide range of endocrine conditions. However, it remains unclear as to whether the state of micropenis, itself, is associated with any long-term consequences. There is a lack of systematic studies comparing the impact of different therapeutic options on long-term outcomes, in terms of genital appearance, quality of life and sexual satisfaction. To date, research has been hampered by a small sample size and inclusion of a wide range of heterogeneous diagnoses; for these reasons, condition specific outcomes have been difficult to compare between studies. Lastly, there is a need for a greater collaborative effort in collecting standardized data so that all real-world or experimental interventions performed at an early age can be studied systematically into adulthood.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dominik Havsteen-Franklin ◽  
Megan Tjasink ◽  
Jacqueline Winter Kottler ◽  
Claire Grant ◽  
Veena Kumari

Crisis events, such as the COVID-19 pandemic, can have a devastating effect on communities and the care professionals within them. Over recent years, arts-based interventions have helped in a wide range of crisis situations, being recommended to support the workforce during and after complex crisis but there has been no systematic review of the role of arts-based crisis interventions and whether there are cogent themes regarding practice elements and outcomes. We, therefore, conducted a systematic review to (i) define the arts-based change process used during and after crisis events, and (ii) explore the perceptions of intermediate and long-term mental health benefits of arts-based interventions for professionals in caring roles. Our search yielded six studies (all qualitative). All data were thematically aggregated and meta-synthesized, revealing seven practice elements (a safe place, focusing on strengths and protective factors, developing psychosocial competencies to support peers, emotional expression and processing, identifying and naming the impact of the crisis, using an integrative creative approach, and cultural and organizational sensitivity) applied across all six studies, as well as a range of intermediate and long-term benefits shared common features (adapting, growing, and recovering; using the community as a healing resource; reducing or preventing symptoms of stress or trauma reactions, psychophysiological homeostasis). The ways in which these studies were designed independently from one another and yet used the same practice elements in their crisis interventions indicates that there is comparability about how and why the arts-based practice elements are being used and to what effect. Our findings provide a sound basis and meaningful parameters for future research incorporating quantitative and qualitative approaches to firmly establish the effectiveness of art-based interventions, and how arts can support cultural sensitivity, acceptability and indicated outcomes, particularly those relating to stress and trauma during or following a crisis.


2019 ◽  
Vol 18 (2) ◽  
pp. ar20 ◽  
Author(s):  
Deepshikha Chatterjee ◽  
J. Kevin Ford ◽  
Julie Rojewski ◽  
Stephanie W. Watts

Graduate students and postdocs in science, technology, engineering, and math fields are faced with a wide range of career paths to employment, but they are often not trained to effectively pursue these opportunities. The lack of career management skills implies long tenures in graduate school for many students, especially as tenure-track positions in academia dwindle. At our university, we used a cohort model in which graduate students and postdocs were encouraged to apply to the Broadening Experiences in Scientific Training program (BEST under the aegis of the National Institutes of Health) that provided opportunities to gain career management skills, engage in career exploration, and complete at least one formal internship. In this interview study of the BEST trainees, we investigated the efficacy of internships as career exploration tools and associated outcomes. Our findings show that internships were seen as effective career exploration and self-development vehicles that influenced participants’ long-term career goals. Graduate students and postdocs reported gaining transferable knowledge and skills, in addition to receiving valuable industry mentoring and networking opportunities.


2019 ◽  
Vol 43 (6) ◽  
pp. 587-631 ◽  
Author(s):  
Blaise Gnimassoun

Regional integration in Africa is a subject of great interest, but its impact on income has not been studied sufficiently. Using cross-sectional and panel estimations, this article examines the impact of African integration on real per capita income in Africa. Accordingly, we consider intra-African trade and migration flows as quantitative measures reflecting the intensity of regional integration. To address the endogeneity concerns, we use a gravity-based, two-stage least-squares strategy. Our results show that, from a long-term perspective, African integration has not been strong enough to generate a positive, significant, and robust impact on real per capita income in Africa. However, it does appear to be significantly income-enhancing in the short and medium terms but only through intercountry migration. These results are robust to a wide range of specifications.


2020 ◽  
Vol 319 (2) ◽  
pp. H282-H305
Author(s):  
Amina Kunovac ◽  
Quincy A. Hathaway ◽  
Mark V. Pinti ◽  
Andrew D. Taylor ◽  
John M. Hollander

Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating “omics”-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.


Sign in / Sign up

Export Citation Format

Share Document