scholarly journals Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain

Author(s):  
Safa Baccour ◽  
Jose Albiac ◽  
Taher Kahil

Climate change represents a serious threat to life in earth. Agriculture releases significant emissions of greenhouse gases (GHG), but also offers low-cost opportunities to mitigate GHG emissions. This paper assesses agricultural GHG emissions in Aragon, one important and representative region for agriculture in Spain. The Marginal Abatement Cost Curve (MACC) approach is used to analyze the abatement potential and cost-efficiency of mitigation measures under several scenarios, with and without taking into account the interaction among measures and their transaction costs. The assessment identifies the environmental and economic outcomes of different combinations of measures, including crop, livestock and forest measures. Some of these measures are win-win, with pollution abatement at negative costs to farmers. Moreover, we develop future mitigation scenarios for agriculture toward the year 2050. Results highlight the trade-offs and synergies between the economic and environmental outcomes of mitigation measures. The biophysical processes underlying mitigation efforts are assessed taking into account the significant effects of interactions between measures. Interactions reduce the abatement potential and worsen the cost-efficiency of measures. The inclusion of transaction costs provides a better ranking of measures and a more accurate estimation of implementation costs. The scenario analysis shows how the combinations of measures could reduce emissions by up to 75% and promote sustainable agriculture in the future.

2019 ◽  
Vol 33 (12) ◽  
pp. 4335-4349 ◽  
Author(s):  
Karin Sjöstrand ◽  
Andreas Lindhe ◽  
Tore Söderqvist ◽  
Peter Dahlqvist ◽  
Lars Rosén

Abstract As water scarcity and drought become more common, planning to avoid their consequences becomes crucial. Measures to prevent the impact of new climate conditions are expected to be extensive, costly and associated with major uncertainties. It is therefore necessary that policymakers and practitioners in both the public and private sector can compare possible mitigation measures in order to make economically rational investment decisions. For this to be successful, decision-makers need relevant decision support. This paper presents a novel approach of constructing marginal abatement cost curves for comparing water scarcity mitigation measures while taking the underlying uncertainties into account. Uncertainties in input variables are represented by probability distributions and calculations are performed using Monte Carlo simulations. This approach is applied on the island of Gotland, one of the most water-stressed parts of Sweden, to provide the first marginal abatement cost curve in Europe for water scarcity mitigation in which municipal, agricultural, industrial and household measures are compared. The results show that the agricultural measure of on-farm storage has the greatest potential to increase water availability on the island. Among municipal measures, increased groundwater extraction and desalination offer the greatest potential, although desalination is almost 25 times more costly per cubic meter. The most cost-effective measure is linked to hot water savings in the hotel industry. The approach presented provides a quantitative visualization of the financial trade-offs and uncertainties implied by different mitigation measures. It provides critical economic insights for all parties concerned and is thus an important basis for decision-making.


2010 ◽  
Vol 11 ◽  
pp. 70-82
Author(s):  
Suren Kulshreshtha

Adoption of mitigation measures to reduce greenhouse gas emissions may affect other members of the society, producing a situation of trade-offs. In this study, such a trade-off is has been analyzed using three aspects of the Canadian society: producers (farm level adopter), environment (through reduction in the GHG emissions),; and regional economy (including rest of the society through lost / gained economic activities). The nutrient management strategy involving the switching nitrogen fertilizer application from a combination of fall and spring application to a 100 percent spring application. Results suggest that the adoption of such a measure creates a 'win-win' situation, being both environmentally and economically desirable. Under the scenario, fertilizer expenditures decreased by $43 million (giving rise to an equivalent increase in farm income), GHG emissions (in CO2E) by 2.15 percent of the 2000 level of emissions, Canadian economy as a whole showed improvements, although on a regional basis the results were mixed.Key words: Canadian prairie agriculture; Greenhouse gases; Mitigation; Nitrogen fertilizer Use; Trade-off analysisThe Journal of AGRICULTURE AND ENVIRONMENT Vol. 11, 2010Page: 70-82Uploaded date: 15 Septembre, 2010


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Tshepelayi Kabata ◽  
Lilyan E. Fulginiti ◽  
Richard K. Perrin

Abstract Background Most studies on the environmental impacts of agriculture have attempted to measure environmental impacts but have not assessed the ability of the sector to reduce or mitigate such impacts. Only a few studies have examined greenhouse gas emissions from the sector. This paper assesses the ability of states in the U.S. to reduce agricultural emissions of methane and nitrous oxide, two major greenhouse gases (GHGs) with important global warming potential. Methods The analysis evaluates Färe’s PAC (pollution abatement cost) for each state and year, a measure of the potential opportunity costs of subjecting the sector to GHG emissions regulation. We use both hyperbolic and directional distance functions to specify agricultural technology with good and bad outputs. Results and conclusions We find that such regulations might reduce output by an average of about 2%, although the results for individual states vary quite widely.


2016 ◽  
Vol 14 (1) ◽  
pp. 39 ◽  
Author(s):  
Miranti Ariani ◽  
P. Setyanto ◽  
M. Ardiansyah

ABSTRAK Komitmen Pemerintah Indonesia untuk penurunan emisi GRK sebesar 26% sampai 2020, melibatkan keikutsertaan daerah secara aktif. Penelitian ini bertujuan menganalisis opsi-opsi mitigasi pada pengelolaan lahan sawah yang mungkin dilakukan dengan menggunakan pendekatan Marginal Abatement Cost atau biaya pengurangan emisi yang berprinsip pada pemilihan aksi mitigasi dengan biaya rendah dan potensi penurunan yang besar. Lokasi penelitian dipilih secara purposive yaitu di Kabupaten Grobogan Propinsi Jawa Tengah dan Kabupaten Tanjung Jabung Timur Propinsi Jambi pada tahun 2013 untuk analisis tahun 2011. Hasil penelitian menunjukkan teknologi mitigasi yang berpotensi besar menurunkan emisi GRK dengan biaya rendah di Kabupaten Grobogan adalah penerapan teknik budidaya padi dengan penerapan Pengelolaan Tanaman Terpadu (PTT) dan penggantian varietas padi dengan varietas padi yang rendah emisi GRK. Sementara di Kabupaten Tanjung Jabung Timur, teknologi ameliorasi dengan kompos, pupuk kandang dan penerapan teknologi tanpa olah tanah+tanam benih langsung merupakan teknologi mitigasi yang memiliki potensi besar menurunkan emisi dengan biaya yang rendah. Kata kunci: pertanian, gas rumah kaca, biaya pengurangan emisi, mitigasi ABSTRACT The Indonesian government's commitment to decrease GHG emissions by 26 % until 2020, actively involve local government’s participation. This study aims to analyze mitigation options inpaddy fields management that may be performed by using the approach of Marginal Abatement Cost with the principle of selecting mitigation actions with low cost and high potential emission decrease. Locations were selected purposively in Grobogan Central Java Province and East Tanjung Jabung Jambi in 2013 for 2011 data analysis. The results show mitigation activity such as low methane rice varieties and Integrated Crop Management could be applied at Grobogan with low cost, while using amelioration such as compost or manure and non tillage+direct seeded could be applied at East Tanjung Jabung with low cost as well. Keywords: agriculture, greenhouse gas, marginal abatement cost, mitigation Cara sitasi: Arianti, M., Setyanto, P., Ardiansyah, M. (2016). Biaya Pengurangan (Marginal Abatement Cost) Emisi Gas Rumah Kaca(GRK) Sektor PErtanian di Kabupaten Grobogan dan Tanjung Jabung Timur. Jurnal Ilmu Lingkungan. 14(1),39-49, doi:10.14710/jil.14.1.39-49


2020 ◽  
pp. 51-81
Author(s):  
D. P. Frolov

The transaction cost economics has accumulated a mass of dogmatic concepts and assertions that have acquired high stability under the influence of path dependence. These include the dogma about transaction costs as frictions, the dogma about the unproductiveness of transactions as a generator of losses, “Stigler—Coase” theorem and the logic of transaction cost minimization, and also the dogma about the priority of institutions providing low-cost transactions. The listed dogmas underlie the prevailing tradition of transactional analysis the frictional paradigm — which, in turn, is the foundation of neo-institutional theory. Therefore, the community of new institutionalists implicitly blocks attempts of a serious revision of this dogmatics. The purpose of the article is to substantiate a post-institutional (alternative to the dominant neo-institutional discourse) value-oriented perspective for the development of transactional studies based on rethinking and combining forgotten theoretical alternatives. Those are Commons’s theory of transactions, Wallis—North’s theory of transaction sector, theory of transaction benefits (T. Sandler, N. Komesar, T. Eggertsson) and Zajac—Olsen’s theory of transaction value. The article provides arguments and examples in favor of broader explanatory possibilities of value-oriented transactional analysis.


2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.


Author(s):  
Jan Abel Olsen

This chapter, the longest in the book, explains the fundamentals of microeconomics and its application to the analysis of health and healthcare. The concepts of scarcity and opportunity costs lie at the heart of the economics discipline. Based on the standard production function with two input factors, the important concept of cost-efficiency is explained; and based on the premise of scarcity in the availability of input factors, the concept of opportunity costs is explained. An important insight from consumer theory is that people make trade-offs. Their preferences and income determine their chosen combination of goods, as illustrated by an indifference curve. An important piece of information for policymakers attempting to intervene in people’s demand for healthy, and unhealthy, goods is to know how sensitive demand is to changing prices and income. The chapter explains and defines elasticities of demand.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2841
Author(s):  
Zhiqiang Zhao ◽  
Lu Liu ◽  
Luofu Min ◽  
Wen Zhang ◽  
Yuxin Wang

Electrochemical oxidation, widely used in green production and pollution abatement, is often accompanied by the hydrogen evolution reaction (HER), which results in a high consumption of electricity and is a potential explosion hazard. To solve this problem, we report here a method for converting the original HER cathode into one that enables the oxygen reduction reaction (ORR) without having to build new electrolysis cells or be concerned about electrolyte leakage from the O2 gas electrode. The viability of this method is demonstrated using the electrolytic production of ammonium persulfate (APS) as an example. The original carbon black electrode for the HER is converted to an ORR electrode by first undergoing in situ anodization and then contacting O2 or air bubbled from the bottom of the electrode. With this sole change, APS production can achieve an electric energy saving of up to 20.3%. Considering the ease and low cost of this modification, such significant electricity savings make this method very promising in the upgrade of electrochemical oxidation processes, with wide potential applications.


2017 ◽  
Vol 17 (6) ◽  
pp. 881-885 ◽  
Author(s):  
Luigi Guerriero ◽  
Giovanni Guerriero ◽  
Gerardo Grelle ◽  
Francesco M. Guadagno ◽  
Paola Revellino

Abstract. Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


Sign in / Sign up

Export Citation Format

Share Document