scholarly journals Distribution Characteristics and Risk Assessment of Heavy Metals in Soil and Street Dust with Different Land Uses, a Case in Changsha, China

Author(s):  
Yalei He ◽  
Yan Zhang ◽  
Chi Peng ◽  
Xinxing Wan ◽  
Zhaohui Guo ◽  
...  

Rapid urbanization and industrialization have led to the accumulation of heavy metals in urban areas. The distribution and health risk of heavy metals in soil and street dust were studied by collecting the samples in pairs from different land uses in Changsha, China. The results showed that the average contents of the heavy metals Pb, Cd, Cu, Zn, Cr and Ni in the soil were 45.3, 0.69, 46.3, 220.4, 128.7 and 32.9 mg·kg−1, and the corresponding heavy metal contents in the street dust were 130.1, 3.9, 130.8, 667.2, 223.2, 50.5 mg·kg−1, respectively. The soils in the parks and roadsides have higher heavy metal contents than those in the residential and agricultural areas. The street dust collected from parks, roadsides and residential areas contained higher heavy metal contents than agricultural areas. Significant correlations were found between heavy metals, suggesting similar sources. However, most of the heavy metals in the soil were uncorrelated with those in the street dust. The contents of heavy metals in soil are the results of long-term pollution. Street dust is easily affected by natural or human disturbances, reflecting pollution emissions in a short period. The health risks posed by heavy metals in the soil are acceptable, but the street dust may threaten children’s health, especially in residential areas. Pb, Cr and Cd are the main risk contributors. Reducing the emissions from industrial plants and traffic may reduce the risk of exposure to heavy metals in the street dust.

2003 ◽  
Vol 60 (4) ◽  
pp. 793-806 ◽  
Author(s):  
Maria Lucia Azevedo Silveira ◽  
Luís Reynaldo Ferracciú Alleoni ◽  
Luiz Roberto Guimarães Guilherme

The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant), total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Alexander Petukhov ◽  
Tatyana Kremleva ◽  
Galina Petukhova ◽  
Nikolay Khritokhin

This study was conducted in Tyumen (Russian Federation) to establish the effects of heavy metals’ (Cu, Zn, Fe, Mn, Pb, and Cd) accumulation in soil and coltsfoot, as well as plants’ biochemical responses to such an accumulation. The mobile and acid-soluble heavy metal fractions in soils, and the heavy metal contents in plants, were determined by atomic absorption spectrophotometry. The Cu, Zn, Fe, Mn, and Pb concentrations in soils exceeded background values. Pb content at the battery manufacturing plant was above the maximum permitted concentration. The percentages of the mobile heavy metal fractions decreased in the following order: Mn > Zn > Cu > Fe. The greatest heavy metal accumulation in soils and plants was found at the battery manufacturing and metallurgical plants examined in our study. Heavy metals’ accumulation in the aboveground part of Tussilago farfara decreased in the following order: Fe > Zn > Cu > Mn > Pb > Cd. The accumulation of heavy metals stimulated the synthesis of photosynthetic pigments by 6–30%. Heavy metals provoked oxidative stress in cells, increasing the concentration of lipid peroxidation in products by up to 80%. Plant phenolics and flavonoids in the urban area of our study decreased compared to those in the control by 1.05, reaching up to 6.5 times. The change in coltsfoot catalase activity both increased and declined. Biochemical responses and heavy metal accumulation in coltsfoot from urban areas limit its use for medicinal purposes.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1310
Author(s):  
Matúš Várady ◽  
Sylwester Ślusarczyk ◽  
Jana Boržíkova ◽  
Katarína Hanková ◽  
Michaela Vieriková ◽  
...  

The aim of this study was to determine the effect of roasting on the contents of polyphenols (PPH), acrylamide (AA), and caffeine (CAF) and to analyze heavy metals in specialty coffee beans from Colombia (COL) and Nicaragua (NIC). Samples of NIC were naturally processed and COL was fermented anaerobically. Green beans from COL (COL-GR) and NIC (NIC-GR) were roasted at two levels, light roasting (COL-LIGHT and NIC-LIGHT) and darker roasting (COL-DARK and NIC-DARK), at final temperatures of 210 °C (10 min) and 215 °C (12 min), respectively. Quantitative analyses of PPH identified caffeoylquinic acids (CQA), feruloylquinic acids, and dicaffeoylquinic acids. Isomer 5-CQA was present at the highest levels and reached 60.8 and 57.7% in COL-GR and NIC-GR, 23.4 and 29.3% in COL-LIGHT and NIC-LIGHT, and 18 and 24.2% in COL-DARK and NIC-DARK, respectively, of the total PPH. The total PPH contents were highest in COL-GR (59.76 mg/g dry matter, DM). Roasting affected the contents of PPH, CAF, and AA (p < 0.001, p < 0.011 and p < 0.001, respectively). Nickel and cadmium contents were significantly higher in the COL-GR than in the NIC-GR beans. Darker roasting decreased AA content, but light roasting maintained similar amounts of CAF and total PPH.


2011 ◽  
Vol 138-139 ◽  
pp. 1149-1155 ◽  
Author(s):  
Yi Dong Guan ◽  
Ye Hong Du ◽  
Zhen Dong Li ◽  
An Cheng Luo

This paper reports the concentration of heavy metals (Cr, Cu, Zn, Cd and Pb) in the soils and rices surrounding the abandoned rural waste dumping sites in Ningbo. Igeo (geoaccumulation index) was calculated to assess the contamination degree of heavy metals in soils. The mean contents of Cr, Cu, Cd, Zn and Pb of soils were 33.3, 24.1, 1.5, 118.9 and 45.6 mg/(kg DW) (dry weight), respectively. All of them were much higher than that of the reference value (i.e. CK), but there were no coherent trend of the metal contents within 1-120m distance from the dumping site. Igeo of heavy metals reveals the order of Cd>Cu>Cr>Pb>Zn, and the contamination assessment of soils using Igeo indicate the moderate Cd pollution, while the soils were unpolluted-moderately overall by Cr, Cu, Zn as well as Pb. The heavy metal contents in root, stem & leaf and rice grains were all remarkable higher than that of the CK at 20-120 m distances, and the heavy metal contents in root were evidently much higher than other plant parts, while those in rice grain were lowest, indicating the great bioaccumulation trend of heavy metals. Although the metal contents in the rice grain were within the legislation limit, its bioaccumulation trend of heavy metals was remarkable, whose contents were 4.38-fold for Cr, 1.76-fold for Cu, 1.28-fold for Zn, 2.67-fold for Cd and 3.03-fold for Pb higher than that of reference value, respectively. Finally, we proposed a decentralized in-situ restoration approach for the dumping sites.


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

&lt;p&gt;The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita&lt;sup&gt;&amp;#174;&lt;/sup&gt; and Filtralite&lt;sup&gt;&amp;#174;&lt;/sup&gt;, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.&lt;/p&gt;


2022 ◽  
Vol 12 (2) ◽  
pp. 595
Author(s):  
Collin J. Weber ◽  
Jens Hahn ◽  
Christian Opp

Soils contain an increasing number of different pollutants, which are often released into the environment by human activity. Among the “new” potential pollutants are plastics and microplastics. “Recognized” pollutants such as heavy metals, of geogenic and anthropogenic origin, now meet purely anthropogenic contaminants such as plastic particles. Those can meet especially in floodplain landscapes and floodplain soils, because of their function as a temporary sink for sediments, nutrients, and pollutants. Based on a geospatial sampling approach, we analyzed the soil properties and heavy metal contents (ICP-MS) in soil material and macroplastic particles, and calculated total plastic concentrations (Ptot) from preliminary studies. Those data were used to investigate spatial connections between both groups of pollutants. Our results from the example of the Lahn river catchment show a low-to-moderate contamination of the floodplain soils with heavy metals and a wide distribution of plastic contents up to a depth of two meters. Furthermore, we were able to document heavy metal contents in macroplastic particles. Spatial and statistical correlations between both pollutants were found. Those correlations are mainly expressed by a comparable variability in concentrations across the catchment and in a common accumulation in topsoil and upper soil or sediment layers (0–50 cm). The results indicate comparable deposition conditions of both pollutants in the floodplain system.


Author(s):  
Özgür Canpolat ◽  
Ece Vanlı

Industries, as a source of pollution, have a considerable impact on aquatic ecosystems due to the diversity in the composition of their wastewater. In this study, it is aimed to determine the heavy metal pollution caused by the wastewater of milk products factory, paint factory and textile factory in the Organized Industrial Zone of Kahramanmaraş province. For this purpose, seasonal concentrations of some heavy metals (Fe, Cu, Zn, Cr, Ni, Cd, As and Hg) have been determined in wastewaters of milk products factory, paint factory and textile factory and in the region where these wastewaters discharge in the Erkenez Stream. The seasonal variation of heavy metals in all stations, generally the lowest concentrations of all elements were determined in winter and the highest concentrations were determined in summer. When the heavy metal contents of milk products factory, paint factory and textile factory wastewaters were compared, the highest values were found in textile factory wastewater. When all stations are taken into consideration, according to USEPA and water quality criteria, it is determined that the wastewaters of milk products factory, paint factory and textile factory and the area of the Erkenez Stream, where these wastewaters are discharged, were very dirty in term of heavy metals. When these results are taken into consideration, it is clear that the wastewater of these factories causes serious heavy metal pollution in the Erkenez Stream.


2005 ◽  
pp. 55-67 ◽  
Author(s):  
Ratko Kadovic ◽  
Olivera Kosanin ◽  
Snezana Belanovic ◽  
Milan Knezevic

During the last decades, forest ecosystems have been strongly exposed to the effect of different harmful pollutants, especially from the atmosphere. Harmful substances from the air, in addition to the direct effect on forest trees, also deposit in the soil, and have an adverse effect on soil chemistry and pedogenetic processes. The results of previous studies in Serbia (Kadovic, Knezevic, 2002, 2004) show some specificities regarding the accumulation and migration of heavy metals in the soil. The highest concentrations were found in the layers of forest litter and in the surface organo-mineral horizons. This paper presents the results of the study of heavy metal contents (Zn, Mn, Cu, Fe, Cd, Pb, Ni and Cr) in the organic horizon (forest litter) of beech forests in Serbia. The study of the heavy metal content in the organic horizon (forest litter) is very significant primarily in the aim of monitoring the trend of their migration through the soil profile and the effect on the soil properties and genesis. The soil quality in beech forests in Serbia was assessed within the Project ICP Forest, Level I, by the methodology UN/ECE-EC, 2000.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed Anouar Nouioui ◽  
Salah Mahjoubi ◽  
Asma Ghorbel ◽  
Marouen Ben Haj Yahia ◽  
Dorra Amira ◽  
...  

This study was undertaken in order to determine heavy metal contents in twelve (n=12) henna brands and eleven (n=11) kohl products. An analytical test was performed for Pb, Cd, Cu, and Zn in henna and kohl products using atomic absorption spectrophotometery. The overall mean concentrations of heavy metals in henna varied between 1.2 and 8.9 μg g−1 for Pb; 0.8 and 18.6 μg g−1 for Cd; 0.5 μg g−1 and 3.3 μg g−1 for Cu; and 3.7 μg g−1 and 90.0 μg g−1 for Zn. As for kohl products, Pb concentrations ranged between 51.1 μg g−1 and 4839.5 μg g−1, Cd concentrations ranged between 1.0 μg g−1 and 158.6 μg g−1, Cu concentrations ranged between 2.5 μg g−1 and 162.5 μg g−1, and Zn concentrations ranged between 0.7 μg g−1 and 185.0 μg g−1. The results of our study revealed that Pb, Cd, Cu, and Zn contents in investigated samples were high, making from the prolonged use of such products a potential threat to human health. Therefore, major quality controls are recommended in order to enforce acceptable limits of potential contaminants in cosmetics and good manufacturing practice.


Sign in / Sign up

Export Citation Format

Share Document