scholarly journals Personal Exposure to Fine Particles (PM2.5) in Northwest Africa: Case of the Urban City of Bamako in Mali

Author(s):  
Alimata Sidibe ◽  
Yosuke Sakamoto ◽  
Kentaro Murano ◽  
Ousmane Koita ◽  
Ibrahim Traore ◽  
...  

Personal exposure to particulate matter (PM) from anthropogenic activities is a major concern in African countries, including Mali. However, knowledge of particulates is scant. This study was undertaken to characterize personal exposure to PM2.5 microns or less in diameter (PM2.5) in the city of Bamako in Mali. The exposure to PM2.5, through daily activities was observed from September 2020 to February 2021. Participants wore palm-sized optical PM2.5 sensors on their chest during their daily activities. The exposure levels in four different groups of residents were investigated in relation to their daily activities. The variation in PM2.5 concentration was measured during different activities in different microenvironments, and the main sources of exposure were identified. The highest average 10 min concentrations were observed at home and in bedrooms, while the participants were using specific products typically used in Africa, Asia, and South America that included insecticides (IST; 999 µg/m3) and incense (ICS; 145 µg/m3), followed by traffic (216 µg/m3) and cooking (150 µg/m3). The lowest average 10 min concentrations were also observed in the same microenvironment lacking IST or ICS (≤14 µg/m3). With no use of specific products, office workers and students were the least exposed, and drivers and cooks were the most exposed. The concentrations are up to 7.5 and 3 times higher than the World Health Organization’s yearly and daily recommended exposure levels, respectively, indicating the need to promptly elaborate and apply effective mitigation strategies to improve air quality and protect public health. This study highlights the importance of indoor air pollution sources related to culture and confirms previous studies on urban outdoor air pollution sources, especially in developing countries. The findings could be applied to cities other than Bamako, as similar practices and lifestyles are common in different cultures.

2020 ◽  
Vol XXIII (2) ◽  
pp. 59-63
Author(s):  
Avram Elena Rita

The present paper will be focused on analyzing the factors that influence indoor air qualityof the ship cabins and the hyperbaric chambers taking into account the specific degree of pollution, as oxidation of metal surfaces, vaporization, nature of the paints used, respiration, gases or particles coming from the combustion of fuels, chemicals, and allergens. The article will present a synthesis of the influence of characteristic parameters, such as ventilation rate and exposure to mold or chemicals on indoor air quality, as this is strictly and directly related to health, comfort, and ability to work.


2021 ◽  
Vol 111 ◽  
pp. 420-424
Author(s):  
Michael Greenstone ◽  
Kenneth Lee ◽  
Harshil Sahai

In Delhi, one of the world's most polluted cities, there is relatively little information on indoor air pollution and how it varies by socioeconomic status (SES). Using indoor air quality monitors (IAQMs), we find that winter levels of household air pollution exceed World Health Organization standards by more than 20 times in both high-and low-SES households. We then evaluate a field experiment that randomly assigned monthlong IAQM user trials across medium-and high-SES households but suffered from significant survey non-response. Among respondents, IAQMs did not affect take-up of subsidized air purifier rentals or other defensive behavior.


Epidemiology ◽  
2005 ◽  
Vol 16 (5) ◽  
pp. S39-S40
Author(s):  
A Penar ◽  
F P Perera ◽  
J D Spengler ◽  
R Jacek ◽  
E Sochacka-Tatara ◽  
...  

Author(s):  
Jonathan M. Samet ◽  
Aaron J. Cohen

A wide variety of manmade and naturally occurring air pollutants are known to cause cancer. Diverse exposures such as tobacco smoke, radionuclides (radon), chemicals (benzene, mustard gas, and volatile organic compounds), fibers (asbestos), and metals and metalloids (chromium, nickel, and arsenic) have long been classified as carcinogenic to humans. Historically, these classifications were based predominantly on high levels of exposure in occupational settings. Over the last thirty to forty years, scientific attention has focused on quantifying the adverse health effects of indoor and outdoor air pollutants at exposure levels several orders of magnitude lower than were studied initially. These include secondhand smoke, household exposure to radon, residential and environmental exposure to asbestos, soot from diesel-powered engines, ambient exposures to small particles (PM2.5), and indoor air pollution from the combustion of biomass and coal. This chapter provides an overview of recent epidemiologic studies of air pollutants and cancer.


Toxics ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 12 ◽  
Author(s):  
Kanyiva Muindi ◽  
Elizabeth Kimani-Murage ◽  
Thaddaeus Egondi ◽  
Joacim Rocklov ◽  
Nawi Ng

2020 ◽  
Author(s):  
Li Peng ◽  
Yanling Shen ◽  
Jing Cai

<p>The impact of microenvironment on public health has received increasing attention, especially in the traffic and living microenvironment. This study shows a comparative research of PM<sub>2.5</sub> exposure concentrations associated with five commuting modes (i.e., walking, bicycling, car, bus and subway) in haze and non-haze periods in Shanghai, China. On the days of observation, the experimenter carried portable instruments to measure personal PM<sub>2.5 </sub>exposure concentrations, commuting by different transport modes, following designated routes round Century Park in Shanghai. Fixed observations of indoor and background concentrations of PM<sub>2.5</sub> were also taken for comparison in a three-story building nearby. We found that the choice of different commuting modes will result in different personal PM<sub>2.5</sub> exposure levels. During the haze periods in winter, cyclists followed by pedestrians had the highest PM<sub>2.5</sub> exposure than those who commuted by subway, bus and car with controlled ventilation settings. During the non-haze periods, subway commuters had the highest PM<sub>2.5</sub> exposure. By contrast with personal exposure, the hourly inhaled dose of PM<sub>2.5</sub> was higher among active commuters than among commuters who used motorised transport such as subway, bus and car. Our results may provide information to help develop exposure mitigation strategies for public health protection.</p>


Author(s):  
Diana Rohlman ◽  
Jamie Donatuto ◽  
Myk Heidt ◽  
Michael Barton ◽  
Larry Campbell ◽  
...  

In 2015, the Swinomish Indian Tribal Community (SITC) was impacted by an air toxic release from one of two nearby oil refineries. This experience motivated SITC members to learn more about their exposure to air toxics. On the invitation of SITC, this community-based study measured personal exposure to polycyclic aromatic hydrocarbons (PAHs) and conducted interviews with the volunteers to evaluate perceptions of the data and experience of participating. Non-smoking SITC members were recruited in March 2016 (N = 10) and January 2017 (N = 22) with seven volunteers participating both times. Volunteers wore a wristband passive sampler for 7 days and completed daily activity diaries. Wristbands were analyzed for 62 PAHs using gas chromatography mass spectrometry. Wilcoxon exact tests determined if the sum total PAHs (ΣPAH) differed by activity, proximity to the refineries, and time. Aggregated results were shared during community meetings, and volunteers received individual reports. Volunteers (N = 9) participated in individual interviews. All volunteers were exposed to different amounts and types of PAHs. Burning candles or using a wood stove and/or propane heating were associated with higher ΣPAH exposures. While ΣPAH was similar in both sampling periods, the composition of PAHs differed. More priority listed PAHs were detected in January (N = 17) versus March (N = 10). Among volunteers who participated in both sampling events, exposure to four PAHs significantly differed between seasons. Overall, volunteers reported that the study made them more aware of air pollution sources in their community. They also commented that the chemical nomenclature was difficult to understand, but appreciated the individual reports that allowed them to visually compare their data to the distribution of data collected in their community. For volunteers with lower exposures, these comparisons gave them relief. However, volunteers with higher exposures reported concern and several changed their behaviors to reduce their exposure to known PAH sources. This study provided an opportunity for SITC members to learn about their personal exposure to a class of air toxics within the context of their community. While the limitations of the study hindered the ability to identify sources of air toxics in the community, this activity appeared to raise awareness about ambient and indoor air pollution among the volunteers.


2021 ◽  
Vol 13 (2) ◽  
pp. 599
Author(s):  
Diana Mariana Cocârţă ◽  
Mariana Prodana ◽  
Ioana Demetrescu ◽  
Patricia Elena Maria Lungu ◽  
Andreea Cristiana Didilescu

(1) Background: Indoor air pollution can affect the well-being and health of humans. Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes, such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and smoking activities. In 2017, according to the Global Burden of Disease study, 1.6 million people died prematurely because of indoor air pollution. The health effects of outdoor exposure to PM have been the subject of both research and regulatory action, and indoor exposure to fine particles is gaining more and more attention as a potential source of adverse health effects. Moreover, in critical situations such as the current pandemic crisis, to protect the health of the population, patients, and staff in all areas of society (particularly in indoor environments, where there are vulnerable groups, such as people who have pre-existing lung conditions, patients, elderly people, and healthcare professionals such as dental practitioners), there is an urgent need to improve long- and short-term health. Exposure to aerosols and splatter contaminated with bacteria, viruses, and blood produced during dental procedures performed on patients rarely leads to the transmission of infectious agents between patients and dental health care staff if infection prevention procedures are strictly followed. On the other hand, in the current circumstances of the pandemic crisis, dental practitioners could have an occupational risk of acquiring coronavirus disease as they may treat asymptomatic and minimally symptomatic patients. Consequently, an increased risk of SARS-CoV-2 infection could occur in dental offices, both for staff that provide dental healthcare and for other patients, considering that many dental procedures produce droplets and dental aerosols, which carry an infectious virus such as SARS-CoV-2. (2) Types of studies reviewed and applied methodology: The current work provides a critical review and evaluation, as well as perspectives concerning previous studies on health risks of indoor exposure to PM in dental offices. The authors reviewed representative dental medicine literature focused on sources of indoor PM10 and PM2.5 (particles for which the aerodynamic diameter size is respectively less than 10 and 2.5 μm) in indoor spaces (paying specific attention to dental offices) and their characteristics and toxicological effects in indoor microenvironments. The authors also reviewed representative studies on relations between the indoor air quality and harmful effects, as well as studies on possible indoor viral infections acquired through airborne and droplet transmission. The method employed for the research illustrated in the current paper involved a desk study of documents and records relating to occupational health problems among dental health care providers. In this way, it obtained background information on both the main potential hazards in dentistry and infection risks from aerosol transmission within dental offices. Reviewing this kind of information, especially that relating to bioaerosols, is critical for minimizing the risk to dental staff and patients, particularly when new recommendations for COVID-19 risk reduction for the dental health professional community and patients attending dental clinics are strongly needed. (3) Results: The investigated studies and reports obtained from the medical literature showed that, even if there are a wide number of studies on indoor human exposure to fine particles and health effects, more deep research and specific studies on indoor air pollution with fine particles and implications for workers’ health in dental offices are needed. As dental practices are at a higher risk for hazardous indoor air because of exposure to chemicals and microbes, the occupational exposures and diseases must be addressed, with special attention being paid to the dental staff. The literature also documents that exposure to fine particles in dental offices can be minimized by putting prevention into practice (personal protection barriers such as masks, gloves, and safety eyeglasses) and also keeping indoor air clean (e.g., high-volume evacuation, the use of an air-room-cleaning system with high-efficiency particulate filters, and regularly maintaining the air-conditioning and ventilation systems). These kinds of considerations are extremely important as the impact of indoor pollution on human health is no longer an individual issue, with its connections representing a future part of sustainability which is currently being redefined. These kinds of considerations are extremely important, and the authors believe that a better situation in dentistry needs to be developed, with researchers in materials and dental health trying to understand and explain the impact of indoor pollution on human health.


Sign in / Sign up

Export Citation Format

Share Document