scholarly journals Using Machine Learning to Map Western Australian Landscapes for Mineral Exploration

2021 ◽  
Vol 10 (7) ◽  
pp. 459
Author(s):  
Thomas Albrecht ◽  
Ignacio González-Álvarez ◽  
Jens Klump

Landscapes evolve due to climatic conditions, tectonic activity, geological features, biological activity, and sedimentary dynamics. Geological processes at depth ultimately control and are linked to the resulting surface features. Large regions in Australia, West Africa, India, and China are blanketed by cover (intensely weathered surface material and/or later sediment deposition, both up to hundreds of metres thick). Mineral exploration through cover poses a significant technological challenge worldwide. Classifying and understanding landscape types and their variability is of key importance for mineral exploration in covered regions. Landscape variability expresses how near-surface geochemistry is linked to underlying lithologies. Therefore, landscape variability mapping should inform surface geochemical sampling strategies for mineral exploration. Advances in satellite imaging and computing power have enabled the creation of large geospatial data sets, the sheer size of which necessitates automated processing. In this study, we describe a methodology to enable the automated mapping of landscape pattern domains using machine learning (ML) algorithms. From a freely available digital elevation model, derived data, and sample landclass boundaries provided by domain experts, our algorithm produces a dense map of the model region in Western Australia. Both random forest and support vector machine classification achieve approximately 98% classification accuracy with a reasonable runtime of 48 minutes on a single Intel® Core™ i7-8550U CPU core. We discuss computational resources and study the effect of grid resolution. Larger tiles result in a more contiguous map, whereas smaller tiles result in a more detailed and, at some point, noisy map. Diversity and distribution of landscapes mapped in this study support previous results. In addition, our results are consistent with the geological trends and main basement features in the region. Mapping landscape variability at a large scale can be used globally as a fundamental tool for guiding more efficient mineral exploration programs in regions under cover.

Author(s):  
Thomas Albrecht ◽  
Ignacio González-Álvarez ◽  
Jens Klump

Landscapes evolve due to climatic conditions, tectonic activity, geological features, biological activity, and sedimentary dynamics. These processes link geological processes at depth to surface features. Consequently, the study of landscapes can reveal essential information about the geochemical footprint of ore deposits at depth. Advances in satellite imaging and computing power have enabled the creation of large geospatial datasets, the sheer size of which necessitates automated processing. We describe a methodology to enable the automated mapping of landscape pattern domains using machine learning (ML) algorithms. From a freely available Digital Elevation Model, derived data, and sample landclass boundaries provided by domain experts, our algorithm produces a dense map of the model region in Western Australia. Both random forest and support vector machine classification achieve about 98\% classification accuracy with reasonable runtime of 48 minutes on a single core. We discuss computational resources and study the effect of grid resolution. Larger tiles result in a more contiguous map, while smaller tiles result in a more detailed, and at some point, noisy map. Diversity and distribution of landscapes mapped in this study support previous results. In addition, our results are consistent with the geological trends and main basement features in the region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Date ◽  
Davis Arthur ◽  
Lauren Pusey-Nazzaro

AbstractTraining machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum computing to train machine learning models efficiently. Adiabatic quantum computers can approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization (QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, we believe adiabatic quantum computers might be instrumental in training machine learning models efficiently in the post Moore’s law era. In order to solve problems on adiabatic quantum computers, they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate the training problems of three machine learning models—linear regression, support vector machine (SVM) and balanced k-means clustering—as QUBO problems, making them conducive to be trained on adiabatic quantum computers. We also analyze the computational complexities of our formulations and compare them to corresponding state-of-the-art classical approaches. We show that the time and space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or equivalent (in case of linear regression) to their classical counterparts.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 233
Author(s):  
Jonathan Z.L. Zhao ◽  
Eliseos J. Mucaki ◽  
Peter K. Rogan

Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% (DDB2,  PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% (DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2,  CDKN1A,  PRKCH,  ENO1,  and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.


Author(s):  
Ahmad Iwan Fadli ◽  
Selo Sulistyo ◽  
Sigit Wibowo

Traffic accident is a very difficult problem to handle on a large scale in a country. Indonesia is one of the most populated, developing countries that use vehicles for daily activities as its main transportation.  It is also the country with the largest number of car users in Southeast Asia, so driving safety needs to be considered. Using machine learning classification method to determine whether a driver is driving safely or not can help reduce the risk of driving accidents. We created a detection system to classify whether the driver is driving safely or unsafely using trip sensor data, which include Gyroscope, Acceleration, and GPS. The classification methods used in this study are Random Forest (RF) classification algorithm, Support Vector Machine (SVM), and Multilayer Perceptron (MLP) by improving data preprocessing using feature extraction and oversampling methods. This study shows that RF has the best performance with 98% accuracy, 98% precision, and 97% sensitivity using the proposed preprocessing stages compared to SVM or MLP.


2021 ◽  
Author(s):  
Mohammad Hassan Almaspoor ◽  
Ali Safaei ◽  
Afshin Salajegheh ◽  
Behrouz Minaei-Bidgoli

Abstract Classification is one of the most important and widely used issues in machine learning, the purpose of which is to create a rule for grouping data to sets of pre-existing categories is based on a set of training sets. Employed successfully in many scientific and engineering areas, the Support Vector Machine (SVM) is among the most promising methods of classification in machine learning. With the advent of big data, many of the machine learning methods have been challenged by big data characteristics. The standard SVM has been proposed for batch learning in which all data are available at the same time. The SVM has a high time complexity, i.e., increasing the number of training samples will intensify the need for computational resources and memory. Hence, many attempts have been made at SVM compatibility with online learning conditions and use of large-scale data. This paper focuses on the analysis, identification, and classification of existing methods for SVM compatibility with online conditions and large-scale data. These methods might be employed to classify big data and propose research areas for future studies. Considering its advantages, the SVM can be among the first options for compatibility with big data and classification of big data. For this purpose, appropriate techniques should be developed for data preprocessing in order to covert data into an appropriate form for learning. The existing frameworks should also be employed for parallel and distributed processes so that SVMs can be made scalable and properly online to be able to handle big data.


2021 ◽  
Vol 22 (16) ◽  
pp. 8958
Author(s):  
Phasit Charoenkwan ◽  
Chanin Nantasenamat ◽  
Md. Mehedi Hasan ◽  
Mohammad Ali Moni ◽  
Pietro Lio’ ◽  
...  

Accurate identification of bitter peptides is of great importance for better understanding their biochemical and biophysical properties. To date, machine learning-based methods have become effective approaches for providing a good avenue for identifying potential bitter peptides from large-scale protein datasets. Although few machine learning-based predictors have been developed for identifying the bitterness of peptides, their prediction performances could be improved. In this study, we developed a new predictor (named iBitter-Fuse) for achieving more accurate identification of bitter peptides. In the proposed iBitter-Fuse, we have integrated a variety of feature encoding schemes for providing sufficient information from different aspects, namely consisting of compositional information and physicochemical properties. To enhance the predictive performance, the customized genetic algorithm utilizing self-assessment-report (GA-SAR) was employed for identifying informative features followed by inputting optimal ones into a support vector machine (SVM)-based classifier for developing the final model (iBitter-Fuse). Benchmarking experiments based on both 10-fold cross-validation and independent tests indicated that the iBitter-Fuse was able to achieve more accurate performance as compared to state-of-the-art methods. To facilitate the high-throughput identification of bitter peptides, the iBitter-Fuse web server was established and made freely available online. It is anticipated that the iBitter-Fuse will be a useful tool for aiding the discovery and de novo design of bitter peptides


2021 ◽  
Vol 16 ◽  
Author(s):  
Yuqing Qian ◽  
Hao Meng ◽  
Weizhong Lu ◽  
Zhijun Liao ◽  
Yijie Ding ◽  
...  

Background: The identification of DNA binding proteins (DBP) is an important research field. Experiment-based methods are time-consuming and labor-intensive for detecting DBP. Objective: To solve the problem of large-scale DBP identification, some machine learning methods are proposed. However, these methods have insufficient predictive accuracy. Our aim is to develop a sequence-based machine learning model to predict DBP. Methods: In our study, we extract six types of features (including NMBAC, GE, MCD, PSSM-AB, PSSM-DWT, and PsePSSM) from protein sequences. We use Multiple Kernel Learning based on Hilbert-Schmidt Independence Criterion (MKL-HSIC) to estimate the optimal kernel. Then, we construct a hypergraph model to describe the relationship between labeled and unlabeled samples. Finally, Laplacian Support Vector Machines (LapSVM) is employed to train the predictive model. Our method is tested on PDB186, PDB1075, PDB2272 and PDB14189 data sets. Result: Compared with other methods, our model achieves best results on benchmark data sets. Conclusion: The accuracy of 87.1% and 74.2% are achieved on PDB186 (Independent test of PDB1075) and PDB2272 (Independent test of PDB14189), respectively.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 233 ◽  
Author(s):  
Jonathan Z.L. Zhao ◽  
Eliseos J. Mucaki ◽  
Peter K. Rogan

Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% (DDB2,  PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% (DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2,  CDKN1A,  PRKCH,  ENO1,  and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.


2019 ◽  
Vol 8 (2) ◽  
pp. 3697-3705 ◽  

Forest fires have become one of the most frequently occurring disasters in recent years. The effects of forest fires have a lasting impact on the environment as it lead to deforestation and global warming, which is also one of its major cause of occurrence. Forest fires are dealt by collecting the satellite images of forest and if there is any emergency caused by the fires then the authorities are notified to mitigate its effects. By the time the authorities get to know about it, the fires would have already caused a lot of damage. Data mining and machine learning techniques can provide an efficient prevention approach where data associated with forests can be used for predicting the eventuality of forest fires. This paper uses the dataset present in the UCI machine learning repository which consists of physical factors and climatic conditions of the Montesinho park situated in Portugal. Various algorithms like Logistic regression, Support Vector Machine, Random forest, K-Nearest neighbors in addition to Bagging and Boosting predictors are used, both with and without Principal Component Analysis (PCA). Among the models in which PCA was applied, Logistic Regression gave the highest F-1 score of 68.26 and among the models where PCA was absent, Gradient boosting gave the highest score of 68.36.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241239
Author(s):  
Kai On Wong ◽  
Osmar R. Zaïane ◽  
Faith G. Davis ◽  
Yutaka Yasui

Background Canada is an ethnically-diverse country, yet its lack of ethnicity information in many large databases impedes effective population research and interventions. Automated ethnicity classification using machine learning has shown potential to address this data gap but its performance in Canada is largely unknown. This study conducted a large-scale machine learning framework to predict ethnicity using a novel set of name and census location features. Methods Using census 1901, the multiclass and binary class classification machine learning pipelines were developed. The 13 ethnic categories examined were Aboriginal (First Nations, Métis, Inuit, and all-combined)), Chinese, English, French, Irish, Italian, Japanese, Russian, Scottish, and others. Machine learning algorithms included regularized logistic regression, C-support vector, and naïve Bayes classifiers. Name features consisted of the entire name string, substrings, double-metaphones, and various name-entity patterns, while location features consisted of the entire location string and substrings of province, district, and subdistrict. Predictive performance metrics included sensitivity, specificity, positive predictive value, negative predictive value, F1, Area Under the Curve for Receiver Operating Characteristic curve, and accuracy. Results The census had 4,812,958 unique individuals. For multiclass classification, the highest performance achieved was 76% F1 and 91% accuracy. For binary classifications for Chinese, French, Italian, Japanese, Russian, and others, the F1 ranged 68–95% (median 87%). The lower performance for English, Irish, and Scottish (F1 ranged 63–67%) was likely due to their shared cultural and linguistic heritage. Adding census location features to the name-based models strongly improved the prediction in Aboriginal classification (F1 increased from 50% to 84%). Conclusions The automated machine learning approach using only name and census location features can predict the ethnicity of Canadians with varying performance by specific ethnic categories.


Sign in / Sign up

Export Citation Format

Share Document