scholarly journals A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2

2018 ◽  
Vol 19 (8) ◽  
pp. 2150 ◽  
Author(s):  
Lu Qiu ◽  
Meng Wang ◽  
Yuping Zhu ◽  
Yuancai Xiang ◽  
Yiguo Zhang

Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is a master regulator of antioxidant and/or electrophile response elements (AREs/EpREs)-driven genes involved in homeostasis, detoxification, and adaptation to various stresses. The cytoprotective activity of Nrf2, though being oppositely involved in both cancer prevention and progression, is critically controlled by Keap1 (Kelch-like ECH-associated protein 1), which is an adaptor subunit of Cullin 3-based E3 ubiquitin ligase and also is a key sensor for oxidative and electrophilic stresses. Here, we first report a novel naturally-occurring mutant of Keap1, designated Keap1ΔC, which lacks most of its C-terminal Nrf2-interacting domain essential for inhibition of the cap’n’collar (CNC) basic-region leucine zipper (bZIP) factor. This mutant Keap1ΔC is yielded by translation from an alternatively mRNA-spliced variant lacking the fourth and fifth exons, but their coding sequences are retained in the wild-type Keap1 locus (with no genomic deletions). Although this variant was found primarily in the human highly-metastatic hepatoma (MHCC97H) cells, it was widely expressed at very lower levels in all other cell lines examined. Such Keap1ΔC retains no or less ability to inhibit Nrf2, so that it functions as a dominant-negative competitor of Keap1 against its inhibition of Nrf2 due to its antagonist effect on Keap1-mediated turnover of Nrf2 protein.

2018 ◽  
Author(s):  
Lu Qiu ◽  
Meng Wang ◽  
Yuping Zhu ◽  
Yuancai Xiang ◽  
Yiguo Zhang

ABSTRACTTranscription factor Nrf2 is a master regulator of antioxidant and/or electrophile response elements (AREs/EpREs)driven genes involved in homeostasis, detoxification and adaptation to various stresses. The cytoprotective activity of Nrf2, though being oppositely involved in both cancer prevention and progression, is critically controlled by Keap1 (Kelch-like ECH-associated protein 1) as an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, that is a key sensor for oxidative and electrophilic stresses. Now, we first report a novel naturally-occurring mutant of Keap1, designated Keap1ΔC, which lacks most of its C-terminal Nrf2-interacting domain essential for inhibition of the CNC-bZIP factor. This mutant Keap1ΔC is yielded by translation from an alternatively mRNA-spliced variant lacking the fourth and fifth exons, but their coding sequences are retained in the wild-type Keap1 locus (with no genomic deletions). Although this variant was found primarily in the human highly-metastatic hepatoma (MHCC97H) cells, it was widely expressed at very lower levels in all other cell lines examined. No matter whether Keap1ΔC retains less or no ability to inhibit Nrf2, it functions as a dominant-negative competitor of Keap1 against its inhibition of Nrf2-target genes. This is due to its antagonist effect on Keap1-mediated turnover of Nrf2 protein.


2003 ◽  
Vol 77 (8) ◽  
pp. 4794-4804 ◽  
Author(s):  
Juan Martin-Serrano ◽  
Trinity Zang ◽  
Paul D. Bieniasz

ABSTRACT Retroviral late-budding (L) domains are required for the efficient release of nascent virions. The three known types of L domain, designated according to essential tetrapeptide motifs (PTAP, PPXY, or YPDL), each bind distinct cellular cofactors. We and others have demonstrated that recruitment of an ESCRT-I subunit, Tsg101, a component of the class E vacuolar protein sorting (VPS) machinery, is required for the budding of viruses, such as human immunodeficiency virus type 1 (HIV-1) and Ebola virus, that encode a PTAP-type L domain, but subsequent events remain undefined. In this study, we demonstrate that VPS28, a second component of ESCRT-I, binds to a sequence close to the Tsg101 C terminus and is therefore recruited to the plasma membrane by HIV-1 Gag. In addition, we show that Tsg101 exhibits a multimerization activity. Using a complementation assay in which Tsg101 is artificially recruited to sites of HIV-1 assembly, we demonstrate that the integrity of the VPS28 binding site within Tsg101 is required for particle budding. In addition, mutation of a putative leucine zipper or residues important for Tsg101 multimerization also impairs the ability of Tsg101 to support HIV-1 budding. A minimal multimerizing Tsg101 domain is a dominant negative inhibitor of PTAP-mediated HIV-1 budding but does not inhibit YPDL-type or PPXY-type L-domain function. Nevertheless, YDPL-type L-domain activity is inhibited by expression of a catalytically inactive mutant of the class E VPS ATPase VPS4. These results indicate that all three classes of retroviral L domains require a functioning class E VPS pathway in order to effect budding. However, the PTAP-type L domain appears to be unique in its requirement for an intact, or nearly intact, ESCRT-I complex.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


2004 ◽  
Vol 380 (3) ◽  
pp. 695-703 ◽  
Author(s):  
Yongyi BI ◽  
Richard D. PALMITER ◽  
Kristi M. WOOD ◽  
Qiang MA

Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation–reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap ‘n’ collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-βGeo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1-null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular ‘free’ zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter.


Cell Reports ◽  
2018 ◽  
Vol 25 (6) ◽  
pp. 1577-1592.e6 ◽  
Author(s):  
Marianna Aprile ◽  
Simona Cataldi ◽  
Maria Rosaria Ambrosio ◽  
Vittoria D’Esposito ◽  
Koini Lim ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2983 ◽  
Author(s):  
Prabhakaran Soundararajan ◽  
Jung Kim

Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer.


2017 ◽  
Vol 214 (4) ◽  
pp. 1093-1109 ◽  
Author(s):  
Xinghui Li ◽  
Zhibin Zhang ◽  
Lupeng Li ◽  
Wei Gong ◽  
Audrey J. Lazenby ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) is a key mediator of intestinal inflammation and tumorigenesis. However, the molecular mechanism that modulates STAT3 phosphorylation and activation is not fully understood. Here, we demonstrate that modification of STAT3 with O-linked β-N-acetylglucosamine (O-GlcNAc) on threonine 717 (T717) negatively regulates its phosphorylation and targets gene expression in macrophages. We further found that cullin 3 (CUL3), a cullin family E3 ubiquitin ligase, down-regulates the expression of the O-GlcNAc transferase (OGT) and inhibits STAT3 O-GlcNAcylation. The inhibitory effect of CUL3 on OGT expression is dependent on nuclear factor E2–related factor-2 (Nrf2), which binds to the Ogt promoter region and increases gene transcription. Myeloid deletion of Cul3 led to defective STAT3 phosphorylation in colon macrophages, which was accompanied by exacerbated colonic inflammation and inflammation-driven tumorigenesis. Thus, this study identifies a new form of posttranslational modification of STAT3, modulating its phosphorylation, and suggests the importance of immunometabolism on colonic inflammation and tumorigenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Bai ◽  
Xiaolu Wang ◽  
Song Zhao ◽  
Chunye Ma ◽  
Jiuwei Cui ◽  
...  

Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by bothin vivoand epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.


2001 ◽  
Vol 183 (17) ◽  
pp. 4985-4993 ◽  
Author(s):  
Minetaka Sugiyama ◽  
Jun-Ichi Nikawa

ABSTRACT In the yeast Saccharomyces cerevisiae, IRE1 encodes a bifunctional protein with transmembrane kinase and endoribonuclease activities. HAC1 encodes a transcription factor which has a basic leucine zipper domain. Both gene products play a crucial role in the unfolded protein response. Mutants in which one of these genes is defective also show the inositol-auxotrophic (Ino−) phenotype, but the reason for this has not been clear. To investigate the mechanism underlying the Ino−phenotype, we screened a multicopy suppressor gene which can suppress the Ino− phenotype of the Δhac1 strain. We obtained a truncated form of the ITC1 gene that has a defect in its 3′ region. Although the truncated form ofITC1 clearly suppressed the Ino− phenotype of the Δhac1 strain, the full-lengthITC1 had a moderate effect. The gene products ofITC1 and ISW2 are known to constitute a chromatin-remodeling complex (T. Tsukiyama, J. Palmer, C. C. Landel, J. Shiloach, and C. Wu, Genes Dev. 13:686–697, 1999). Surprisingly, the deletion of either ITC1 orISW2 in the Δhac1 strain circumvented the inositol requirement and caused derepression of INO1even under repression conditions, i.e., in inositol-containing medium. These data indicate that the Isw2p-Itc1p complex usually repressesINO1 expression and that overexpression of the truncated form of ITC1 functions in a dominant negative manner inINO1 repression. It is conceivable that the repressor function of this complex is regulated by the C-terminal region of Itc1p.


Sign in / Sign up

Export Citation Format

Share Document