scholarly journals The Primary Causes of Muscle Dysfunction Associated with the Point Mutations in Tpm3.12; Conformational Analysis of Mutant Proteins as a Tool for Classification of Myopathies

2018 ◽  
Vol 19 (12) ◽  
pp. 3975 ◽  
Author(s):  
Yurii Borovikov ◽  
Olga Karpicheva ◽  
Armen Simonyan ◽  
Stanislava Avrova ◽  
Elena Rogozovets ◽  
...  

Point mutations in genes encoding isoforms of skeletal muscle tropomyosin may cause nemaline myopathy, cap myopathy (Cap), congenital fiber-type disproportion (CFTD), and distal arthrogryposis. The molecular mechanisms of muscle dysfunction in these diseases remain unclear. We studied the effect of the E173A, R90P, E150A, and A155T myopathy-causing substitutions in γ-tropomyosin (Tpm3.12) on the position of tropomyosin in thin filaments, and the conformational state of actin monomers and myosin heads at different stages of the ATPase cycle using polarized fluorescence microscopy. The E173A, R90P, and E150A mutations produced abnormally large displacement of tropomyosin to the inner domains of actin and an increase in the number of myosin heads in strong-binding state at low and high Ca2+, which is characteristic of CFTD. On the contrary, the A155T mutation caused a decrease in the amount of such heads at high Ca2+ which is typical for mutations associated with Cap. An increase in the number of the myosin heads in strong-binding state at low Ca2+ was observed for all mutations associated with high Ca2+-sensitivity. Comparison between the typical conformational changes in mutant proteins associated with different myopathies observed with α-, β-, and γ-tropomyosins demonstrated the possibility of using such changes as tests for identifying the diseases.

2021 ◽  
Vol 22 (12) ◽  
pp. 6318
Author(s):  
Yurii S. Borovikov ◽  
Daria D. Andreeva ◽  
Stanislava V. Avrova ◽  
Vladimir V. Sirenko ◽  
Armen O. Simonyan ◽  
...  

Point mutations in the genes encoding the skeletal muscle isoforms of tropomyosin can cause a range of muscle diseases. The amino acid substitution of Arg for Pro residue in the 90th position (R90P) in γ-tropomyosin (Tpm3.12) is associated with congenital fiber type disproportion and muscle weakness. The molecular mechanisms underlying muscle dysfunction in this disease remain unclear. Here, we observed that this mutation causes an abnormally high Ca2+-sensitivity of myofilaments in vitro and in muscle fibers. To determine the critical conformational changes that myosin, actin, and tropomyosin undergo during the ATPase cycle and the alterations in these changes caused by R90P replacement in Tpm3.12, we used polarized fluorimetry. It was shown that the R90P mutation inhibits the ability of tropomyosin to shift towards the outer domains of actin, which is accompanied by the almost complete depression of troponin’s ability to switch actin monomers off and to reduce the amount of the myosin heads weakly bound to F-actin at a low Ca2+. These changes in the behavior of tropomyosin and the troponin–tropomyosin complex, as well as in the balance of strongly and weakly bound myosin heads in the ATPase cycle may underlie the occurrence of both abnormally high Ca2+-sensitivity and muscle weakness. BDM, an inhibitor of myosin ATPase activity, and W7, a troponin C antagonist, restore the ability of tropomyosin for Ca2+-dependent movement and the ability of the troponin–tropomyosin complex to switch actin monomers off, demonstrating a weakening of the damaging effect of the R90P mutation on muscle contractility.


2014 ◽  
Vol 82 (4) ◽  
pp. 1600-1605 ◽  
Author(s):  
Melissa A. Dean ◽  
Randall J. Olsen ◽  
S. Wesley Long ◽  
Adriana E. Rosato ◽  
James M. Musser

ABSTRACTStaphylococcus aureussmall-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of fiveS. aureusSCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.


Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 156-160 ◽  
Author(s):  
A. Thomas Look

Abstract Clonal disorders of hematopoiesis, such as myelodysplastic syndromes (MDS) and myeloproliferative diseases (MPD), affect both hematopoietic stem cells and progenitor cells within the erythroid, platelet and granulocytic lineages and can have devastating consequences in children and adults. The genetic features of these diseases often include clonal, nonrandom chromosomal deletions (e.g., 7q–, 5q–, 20q–, 6q–, 11q– and 13q–) that appear to inactivate tumor suppressor genes required for the normal development of myeloid cells (reviewed in Bench1 and Fenaux2). These putative tumor suppressors have proved to be much more difficult to identify than oncogenes activated by chromosomal translocations, the other major class of chromosomal lesions in MDS and MPD.3 Although MDS and MPD are almost certainly caused by mutations in stem/progenitor cells,4 the role of inactivated tumor suppressor genes in this process remains poorly understood. In a small portion of myeloid diseases, mutations have been identified in genes encoding factors known to be required for normal hematopoiesis, such as PU.1, RUNX1, CTNNA1 (α-catenin) and c/EBPα, and implicating these genes as tumor suppressors.5–7 Nonetheless, the identities of most deletion-associated tumor suppressors in these diseases remains elusive, despite complete sequencing of the human genome. The deleted regions detected by cytogenetic methods are generally very large, containing many hundreds of genes, thus making it hard to locate the critical affected gene or genes. It is also unclear whether dysfunctional myelopoiesis results from haploinsufficiency, associated with the deletion of one allele, or from homozygous inactivation due to additional point mutations or microdeletions of the retained wild-type allele. In general MDS have proved surprisingly resistant to conventional treatments. Targeted therapeutic advances in MDS will likely depend on a full comprehension of underlying molecular mechanisms, in particular the tumor suppressor genes lost through clonal, nonrandom chromosomal deletions, such as the 7q– and (del)5q.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6299 ◽  
Author(s):  
Yan Han ◽  
Yungang Wu ◽  
Yi Xu ◽  
Wentao Guo ◽  
Na Zhang ◽  
...  

Background Monopolar spindle 1 (Mps1/TTK) is an apical dual-specificity protein kinase in the spindle assembly checkpoint (SAC) that guarantees accurate segregation of chromosomes during mitosis. High levels of Mps1 are found in various types of human malignancies, such as glioblastoma, osteosarcoma, hepatocellular carcinoma, and breast cancer. Several potent inhibitors of Mps1 exist, and exhibit promising activity in many cell cultures and xenograft models. However, resistance due to point mutations in the kinase domain of Mps1 limits the therapeutic effects of these inhibitors. Understanding the detailed resistance mechanism induced by Mps1 point mutations is therefore vital for the development of novel inhibitors against malignancies. Methods In this study, conventional molecular dynamics (MD) simulation and Gaussian accelerated MD (GaMD) simulation were performed to elucidate the resistance mechanisms of Cpd-5, a potent Mps1 inhibitor, induced by the four representative mutations I531M, I598F, C604Y, S611R. Results Our results from conventional MD simulation combined with structural analysis and free energy calculation indicated that the four mutations weaken the binding affinity of Cpd-5 and the major variations in structural were the conformational changes of the P-loop, A-loop and αC-helix. Energetic differences of per-residue between the WT system and the mutant systems indicated the mutations may allosterically regulate the conformational ensemble and the major variations were residues of Ile-663 and Gln-683, which located in the key loops of catalytic loop and A-loop, respectively. The large conformational and energetic differences were further supported by the GaMD simulations. Overall, these obtained molecular mechanisms will aid rational design of novel Mps1 inhibitors to combat inhibitor resistance.


2020 ◽  
Vol 21 (12) ◽  
pp. 4421
Author(s):  
Yurii S. Borovikov ◽  
Armen O. Simonyan ◽  
Stanislava V. Avrova ◽  
Vladimir V. Sirenko ◽  
Charles S. Redwood ◽  
...  

Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.


2017 ◽  
Vol 114 (42) ◽  
pp. 11115-11120 ◽  
Author(s):  
Binnu Gangadharan ◽  
Margaret S. Sunitha ◽  
Souhrid Mukherjee ◽  
Ritu Roy Chowdhury ◽  
Farah Haque ◽  
...  

Point mutations in genes encoding sarcomeric proteins are the leading cause of inherited primary cardiomyopathies. Among them are mutations in the TNNT2 gene that encodes cardiac troponin T (TnT). These mutations are clustered in the tropomyosin (Tm) binding region of TnT, TNT1 (residues 80–180). To understand the mechanistic changes caused by pathogenic mutations in the TNT1 region, six hypertrophic cardiomyopathy (HCM) and two dilated cardiomyopathy (DCM) mutants were studied by biochemical approaches. Binding assays in the absence and presence of actin revealed changes in the affinity of some, but not all, TnT mutants for Tm relative to WT TnT. HCM mutants were hypersensitive and DCM mutants were hyposensitive to Ca2+ in regulated actomyosin ATPase activities. To gain better insight into the disease mechanism, we modeled the structure of TNT1 and its interactions with Tm. The stability predictions made by the model correlated well with the affinity changes observed in vitro of TnT mutants for Tm. The changes in Ca2+ sensitivity showed a strong correlation with the changes in binding affinity. We suggest the primary reason by which these TNNT2 mutations between residues 92 and 144 cause cardiomyopathy is by changing the affinity of TnT for Tm within the TNT1 region.


2021 ◽  
Vol 80 (4) ◽  
pp. 366-376
Author(s):  
Karlijn Bouman ◽  
Benno Küsters ◽  
Josine M De Winter ◽  
Cynthia Gillet ◽  
Esmee S B Van Kleef ◽  
...  

AbstractNemaline myopathy type 6 (NEM6), KBTBD13-related congenital myopathy is caused by mutated KBTBD13 protein that interacts improperly with thin filaments/actin, provoking impaired muscle-relaxation kinetics. We describe muscle morphology in 18 Dutch NEM6 patients and correlate it with clinical phenotype and pathophysiological mechanisms. Rods were found in in 85% of biopsies by light microscopy, and 89% by electron microscopy. A peculiar ring disposition of rods resulting in ring-rods fiber was observed. Cores were found in 79% of NEM6 biopsies by light microscopy, and 83% by electron microscopy. Electron microscopy also disclosed granulofilamentous protein material in 9 biopsies. Fiber type 1 predominance and prominent nuclear internalization were found. Rods were immunoreactive for α-actinin and myotilin. Areas surrounding the rods showed titin overexpression suggesting derangement of the surrounding sarcomeres. NEM6 myopathology hallmarks are prominent cores, rods including ring-rods fibers, nuclear clumps, and granulofilamentous protein material. This material might represent the histopathologic epiphenomenon of altered interaction between mutated KBTBD13 protein and thin filaments. We claim to classify KBTBD13-related congenital myopathy as rod-core myopathy.


2006 ◽  
Vol 8 (25) ◽  
pp. 1-19 ◽  
Author(s):  
Usha P. Andley

Hereditary childhood cataracts can arise from single-point mutations in genes encoding crystallins, the major protein components of the lens. The cataracts are most commonly inherited by an autosomal dominant mechanism. The nature of the changes in the lens resulting from these point mutations in crystallin genes has not been fully characterised. While aggregation and light scattering associated with expression of the mutant crystallin protein may be an end point, it is also necessary to determine the progression of changes induced at the level of development and differentiation. A key finding in recent work is that cell death or cytotoxicity is associated with mutations in αA-crystallin. The variable morphology or localisation of the cataract in different pedigrees, even with the identical crystallin gene mutation, has led to the idea that other environmental or genetic factors interact to give the final lens phenotype. The study of mechanisms of formation of hereditary cataracts may lead to a greater understanding of the mechanisms that lead to age-related cataracts, a very common cause of blindness in the ageing population.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1828
Author(s):  
Jared Kirui ◽  
Yara Abidine ◽  
Annasara Lenman ◽  
Koushikul Islam ◽  
Yong-Dae Gwon ◽  
...  

Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


Sign in / Sign up

Export Citation Format

Share Document