scholarly journals Relevance of Interactions between Starch-based Coatings and Plum Fruit Surfaces: A Physical-Chemical Analysis

2019 ◽  
Vol 20 (9) ◽  
pp. 2220 ◽  
Author(s):  
Ewelina Basiak ◽  
Martin Geyer ◽  
Frédéric Debeaufort ◽  
Andrzej Lenart ◽  
Manfred Linke

In order to extend the shelf life of the fruit, improve appearance, and to keep all nutrition properties of the plum from diminishing, edible coatings comprised of wheat starch and wheat starch–whey protein isolate (in ratio 80/20) were created. Stand-alone films were produced to assess properties which helped to understand the phenomena occurring on the surface level of coated plums. The properties of coatings based on starch are similar to starch coatings containing oil because the natural epicuticular wax layer of plums merges with coating materials. Adding oil doubled the contact angle value and the dispersive component of the surface tension. The workings of adhesion and cohesion, spreading coefficient, water absorption, water content, and solubility in water of the films decreased. Similar processes were observed on the fruits’ surface. In appearance, the coating process is similar to polishing the plum surface for removing crystalline wax. The color parameters of coated fruits did not significantly change. Newly formed bonds or interactions established between starch, whey proteins, water, glycerol, and oil are displayed by Fourier transform infrared (FTIR) analysis. This work revealed how the interactions between the epicuticular wax on the fruit’s surface and the hydrocolloid-based coatings affect the efficiency of the coatings.

Author(s):  
Daniela Helena Guimarães Pelegrine ◽  
Maria Thereza Moraes Santos Gomes

Abstract This work showed the whey proteins solubility curves, according with temperature and pH conditions. The product constituted of a whey protein isolate obtained from cow milk (ALACENTM 895), acquired by New Zeland Milk Products Ltd. There is a straight analogy between fouling and protein unfolding when milk derived fluids are processed in equipments of heat exchangers, where whey proteins are unfolded in an irreversible way, exposing hidrophobic groups, and they become insoluble and form aggregates. An integrated study was conducted on the effects of temperature and pH on the solubility of whey proteins. The solubility was determined experimentally in the temperature range of 40-90 °C, and pH range of 5.0 - 6.8. The results showed that, both the temperature and pH influenced in the protein solubility; besides, the solubility values were minimum at the pH 4.0 for all temperature values. It was also observed that solubility decreased with temperature increased.


2003 ◽  
Vol 83 (5) ◽  
pp. 353-364 ◽  
Author(s):  
Florence Caussin ◽  
Marie-H�l�ne Famelart ◽  
Jean-Louis Maubois ◽  
Sa�d Bouhallab

Author(s):  
Viviane Machado Azevedo ◽  
Ana Carolina Salgado De Oliveira ◽  
Soraia Vilela Borges ◽  
Josiane Callegaro Raguzzoni ◽  
Marali Vilela Dias ◽  
...  

Abstract: Studies have been made to explore the utilization of pea proteins in terms of edible film and coating materials. The reinforcement of biopolymer films with plant-based nanocrystals has been applied in order to improve their performance properties. The objective was to evaluate the effect of the incorporation of corn starch nanocrystals (SN) (0-15%) in pea protein isolate films. Thermal analysis showed that the addition of up to 5% starch nanocrystals increased thermal stability. A 22.3% decrease was observed in water vapor permeability with the addition of SN. Increasing the SN concentration altered the arrangement of the structure to interleaved, in the matrix, as seen in transmission micrographs. This study showed that the use of corn starch nanocrystals as reinforcement in pea protein films had an effect on the films. The incorporation of up to 10% SN is suggested in order to increase the performance properties of pea protein isolate films.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 246 ◽  
Author(s):  
Saber Avestan ◽  
Mahmood Ghasemnezhad ◽  
Masoud Esfahani ◽  
Caitlin S. Byrt

Silicon application can improve productivity outcomes for salt stressed plants. Here, we describe how strawberry plants respond to treatments including various combinations of salt stress and nano-silicon dioxide, and assess whether nano-silicon dioxide improves strawberry plant tolerance to salt stress. Strawberry plants were treated with salt (0, 25 or 50 mM NaCl), and the nano-silicon dioxide treatments were applied to the strawberry plants before (0, 50 and 100 mg L−1) or after (0 and 50 mg L−1) flowering. The salt stress treatments reduced plant biomass, chlorophyll content, and leaf relative water content (RWC) as expected. Relative to control (no NaCl) plants the salt treated plants had 10% lower membrane stability index (MSI), 81% greater proline content, and 54% greater cuticular transpiration; as well as increased canopy temperature and changes in the structure of the epicuticular wax layer. The plants treated with nano-silicon dioxide were better able to maintain epicuticular wax structure, chlorophyll content, and carotenoid content and accumulated less proline relative to plants treated only with salt and no nano-silicon dioxide. Analysis of scanning electron microscopic (SEM) images revealed that the salt treatments resulted in changes in epicuticular wax type and thickness, and that the application of nano-silicon dioxide suppressed the adverse effects of salinity on the epicuticular wax layer. Nano-silicon dioxide treated salt stressed plants had increased irregular (smoother) crystal wax deposits in their epicuticular layer. Together these observations indicate that application of nano-silicon dioxide can limit the adverse anatomical and biochemical changes related to salt stress impacts on strawberry plants and that this is, in part, associated with epicuticular wax deposition.


2015 ◽  
Vol 45 ◽  
pp. 301-308 ◽  
Author(s):  
Chen Li ◽  
Jie Wang ◽  
Jing Shi ◽  
Xingjian Huang ◽  
Qiang Peng ◽  
...  

2011 ◽  
Vol 105 (10) ◽  
pp. 1512-1519 ◽  
Author(s):  
Sebely Pal ◽  
Vanessa Ellis

Previous evidence indicates that chronic consumption of dairy whey proteins has beneficial effects on CVD risk factors. The present study investigated the postprandial effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight and obese postmenopausal women. This was a randomised, three-way cross-over design study where twenty overweight and obese postmenopausal women consumed a breakfast meal in conjunction with one of three supplements: 45 g whey protein isolate, 45 g sodium caseinate or 45 g of a glucose control. Fasting and postprandial blood samples, blood pressure and pulse wave analysis readings were taken for up to 6 h. After consumption of the meal, both systolic and diastolic blood pressure, and augmentation index (AI) decreased initially for all interventions and gradually returned to baseline levels by 6 h. However, there were no significant differences in AI, systolic or diastolic blood pressure within or between the glucose control, casein or whey groups. There were also no significant group effects on plasma inflammatory markers (IL-6, TNF-α and C-reactive protein). The health effects previously seen with chronic whey protein ingestion were not seen in the acute 6 h postprandial period in relation to blood pressure, vascular function or inflammatory markers when compared with casein and a glucose control. This suggests that such effects are better observed from the long-term consumption of whey proteins.


2018 ◽  
Vol 19 (9) ◽  
pp. 2797 ◽  
Author(s):  
Heleen Van Den Noortgate ◽  
Bert Lagrain ◽  
Tom Wenseleers ◽  
Johan Martens

The pharaoh ant is a notorious and hard to eradicate pest, which poses a threat in hospitals, spreading pathogens and contaminating sterile equipment. When applied on ants, zeolites adsorb part of their epicuticular wax layer. The ants are then vulnerable to desiccation, since this layer regulates water exchange. We analyzed the chemical composition of this wax layer using GC-MS (Gas Chromatography-Mass Spectrometry). A hexane wash of M. pharaonis foragers resulted in the identification of 53 components, four of which were not previously defined in Monomorium species. Selective adsorption of specific compounds on zeolites assisted in the identification of compounds which could not be separated on the GC column and allowed for the identification of three additional compounds. Zeolites show different affinities for the wax compounds depending on pore structure and chemical composition. Selective adsorption of alkanes on zeolites is also investigated in the fields of refinery processes and catalysis. Pore mouth and key lock adsorption mechanisms and selectivity according to molecular weight and branching, investigated in these fields, are also involved in adsorption processes of epicuticular waxes. The insecticidal activity of a zeolite is related to adsorption selectivity rather than capacity. One of the best adsorbing zeolites showed limited insecticidal activity and can be considered as a non-lethal alternative for epicuticular wax sampling.


2020 ◽  
Vol 21 (8) ◽  
pp. 2792
Author(s):  
Claudie Aspirault ◽  
Alain Doyen ◽  
Laurent Bazinet

Separation of α-lactalbumin and β-lactoglobulin improves their respective nutritional and functional properties. One strategy to improve their fractionation is to modify their pH and ionic strength to induce the selective aggregation and precipitation of one of the proteins of interest. Electrodialysis with bipolar membrane (EDBM) is a green process that simultaneously provides acidification and demineralization of a solution without adding any chemical compounds. This research presents the impact on whey proteins separation of different preheating temperatures (20, 50, 55 and 60 °C) combined with EDBM or chemical acidification of 10% whey protein isolate solutions. A β-lactoglobulin fraction at 81.8% purity was obtained in the precipitate after EDBM acidification and preheated at 60 °C, representing a recovery yield of 35.8%. In comparison, chemical acidification combined with a 60 °C preheating treatment provides a β-lactoglobulin fraction at 70.9% purity with a 11.6% recovery yield. The combination of EDBM acidification with a preheating treatment at 60 °C led to a better separation of the main whey proteins than chemical acidification.


Sign in / Sign up

Export Citation Format

Share Document