scholarly journals Analysis of Cuticular Lipids of the Pharaoh Ant (Monomorium pharaonis) and Their Selective Adsorption on Insecticidal Zeolite Powders

2018 ◽  
Vol 19 (9) ◽  
pp. 2797 ◽  
Author(s):  
Heleen Van Den Noortgate ◽  
Bert Lagrain ◽  
Tom Wenseleers ◽  
Johan Martens

The pharaoh ant is a notorious and hard to eradicate pest, which poses a threat in hospitals, spreading pathogens and contaminating sterile equipment. When applied on ants, zeolites adsorb part of their epicuticular wax layer. The ants are then vulnerable to desiccation, since this layer regulates water exchange. We analyzed the chemical composition of this wax layer using GC-MS (Gas Chromatography-Mass Spectrometry). A hexane wash of M. pharaonis foragers resulted in the identification of 53 components, four of which were not previously defined in Monomorium species. Selective adsorption of specific compounds on zeolites assisted in the identification of compounds which could not be separated on the GC column and allowed for the identification of three additional compounds. Zeolites show different affinities for the wax compounds depending on pore structure and chemical composition. Selective adsorption of alkanes on zeolites is also investigated in the fields of refinery processes and catalysis. Pore mouth and key lock adsorption mechanisms and selectivity according to molecular weight and branching, investigated in these fields, are also involved in adsorption processes of epicuticular waxes. The insecticidal activity of a zeolite is related to adsorption selectivity rather than capacity. One of the best adsorbing zeolites showed limited insecticidal activity and can be considered as a non-lethal alternative for epicuticular wax sampling.

2015 ◽  
Vol 14 (4) ◽  
pp. 563-570 ◽  
Author(s):  
Françoise Pauzat ◽  
Gael Marloie ◽  
Alexis Markovits ◽  
Yves Ellinger

AbstractThe origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated {$10\bar 10$} chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule–surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz {$10\bar 10$} surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


2019 ◽  
Vol 25 (34) ◽  
pp. 3633-3644
Author(s):  
Nasrullah Shah ◽  
Saba Gul ◽  
Mazhar Ul-Islam

: Core-shell polymers represent a class of composite particles comprising of minimum two dissimilar constituents, one at the center known as a core which is occupied by the other called shell. Core-shell molecularly imprinting polymers (CSMIPs) are composites prepared via printing a template molecule (analyte) in the coreshell assembly followed by their elimination to provide the everlasting cavities specific to the template molecules. Various other types of CSMIPs with a partial shell, hollow-core and empty-shell are also prepared. Numerous methods have been reported for synthesizing the CSMIPs. CSMIPs composites could develop the ability to identify template molecules, increase the relative adsorption selectivity and offer higher adsorption capacity. Keen features are measured that permits these polymers to be utilized in numerous applications. It has been developed as a modern technique with the probability for an extensive range of uses in selective adsorption, biomedical fields, food processing, environmental applications, in utilizing the plant's extracts for further applications, and sensors. This review covers the approaches of developing the CSMIPs synthetic schemes, and their application with special emphasis on uses in the biomedical field, food care subjects, plant extracts analysis and in environmental studies.


2020 ◽  
Vol 10 ◽  
Author(s):  
Ionara I. Dalcol ◽  
Alessandra O. Pereira ◽  
Luisa H. Paz ◽  
Gabriela Benetti ◽  
Fallon S. Siqueira ◽  
...  

Background: Aristolochia triangularis Cham., popularly known as the "cipó-mil-homens", "angelicó" and "ypê-mi", is applied for the treatment of wounds, skin diseases (6,7), digestive and circulatory system diseases as an antipyretic and for malaria fever. Objective: In this work we investigated the chemical composition, the antimicrobial and antimycobacterial activities of the essential oils (EOs) extracted from A. triangularis fresh stems and leaves collected in Southern Brazil. Methods: Fresh stems and fresh leaves of Aristolochia triangularis Cham. were separately subjected to hydrodistillation using a Clevenger-type apparatus. The chemical composition of the essential oils (EOs) were analyzed by gas chromatography/mass spectrometry (GC/MS). The oil samples were evaluated for their antimycobacterial, antibacterial and antifungal activities against twenty-four microorganisms. Results: Hydrodistillation of fresh stems and leaves of A. triangularis resulted in 0.16% (w/w) and 0.37% (w/w) respectively of light-yellow oils. Germacrene D is found in 13.2 - 13.5% in both EOs. The constituent most abundant in the stems EO (19.18%) was the oxygenated diterpene ent-Kaur-16-en-19-al (10), along with E-nerolidol (17.89%). The main constituents of the leaves EO were bicyclogermacrene (24.79%), β-elemene (11.30%), E-caryophyllene (10.40%) and germacrene A (9.42%), in addition to the previously mentioned germacrene D. The stems and leaves EOs showed capacity to inhibit the Gram-negative Enterobacter aerogenes and the stems EO capacity to inhibit Staphylococcus aureus, with MIC values of 31.2 µg/mL. S. aureus was moderately sensitive to leaves EO, while stems EO displayed moderate activity against Enterococcus faecalis and Salmonella typhimurium (MIC values of 62.5 µg/mL). Candida glabrata was highly susceptible to both EOs (MIC values < 3.9 µg/mL). The EOs showed moderate potential to inhibit the growth of Cryptococcus gatti and Cryptococcus neoformans (MICs of 62.5 μg/mL). Conclusion: The A. triangularis essential oils from stems and leaves displayed capacity to inhibit Enterobacter aerogenes (MIC values of 31.2 µg/mL) and high antifungal effect against Candida glabrata (MIC values of <3.9 µg/mL). Mycobacterium massiliense and M. abscessus were susceptible to the leaves EO, with MICs of 39.06 μg/mL. These results showed the A. triangularis essential oils potential as antifungal and antimycobacterial to be used in the development of new antibiotic.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Severino Zara ◽  
Giacomo L. Petretto ◽  
Alberto Mannu ◽  
Giacomo Zara ◽  
Marilena Budroni ◽  
...  

The production of saffron spice generates large quantities of plant by-products: over 90% of the plant material collected is discarded, and a consideration fraction of this waste is plant stamens. This work investigated the chemical composition and the antimicrobial activities of the non-polar fraction extracted from four different saffron flower stamens. The chemical composition of ethereal extracts of the saffron stamens was qualitatively assessed by means of gas–chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. These analyses revealed ethereal extracts to possess a high polyunsaturated fatty acid content. In vitro antibacterial activity of stamen extracts showed no large differences between Gram-positive and Gram-negative bacteria in terms of minimal inhibitory concentration (MIC). In food matrix microbial analysis of the bacterial strains belonging to the main foodborne pathogen species, including Staphylococcus aureus DSM 20231, Escherichia coli DSM 30083, and Listeria monocytogenes DSM 20600, using low-fat UHT milk, revealed a statistically significant reduction in the number of cells (particularly for E. coli and S. aureus with a complete elimination of the population of the two target bacteria following incubation in diethyl ether extracts of saffron stamen (DES) at high concentrations tested, both at 37 °C and 6 °C (for 48 h and 7 days, respectively). A synergic effect was observed when the pathogens were incubated at 6 °C with DES. This work shows these by-products to be excellent sources of bioactive compounds, which could be exploited in high-added-value products, such as food, cosmetics, and drugs.


2020 ◽  
Vol 15 (12) ◽  
pp. 1934578X2098123
Author(s):  
Peng-fei Yang ◽  
Hui Lu ◽  
Qiong-bo Wang ◽  
Zhi-wei Zhao ◽  
Qiang Liu ◽  
...  

Detailed chemical constituents of essential oil from the Pterocephalus hookeri leaves and its antimicrobial activities were investigated in this study. The essential oil, obtained by hydrodistillation, was characterized by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry analyses. Among the 90 identified compounds, hexadecanoic acid (21.27%), phytol (8.03%), furfural (7.08%), oleic acid (5.25%), and phytone (4.56%) were the major components. In the antimicrobial assay, the essential oil showed strong inhibitory activities against Escherichia coli, Candida albicans, and Staphylococcus aureus with minimum inhibitory concentration values of 31.3, 62.5, and 125 µg/mL, respectively. To our knowledge, this is the first report concerning chemical composition and antimicrobial activities of the essential oil from Pterocephalus hookeri.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1437
Author(s):  
Chih Ming Ma ◽  
Bo-Yuan Yang ◽  
Gui-Bing Hong

Hydrogel beads based on the husk of agarwood fruit (HAF)/sodium alginate (SA), and based on the HAF/chitosan (CS) were developed for the removal of the dyes, crystal violet (CV) and reactive blue 4 (RB4), in aqueous solutions, respectively. The effects of the initial pH (2–10) of the dye solution, the adsorbent dosage (0.5–3.5 g/L), and contact time (0–540 min) were investigated in a batch system. The dynamic adsorption behavior of CV and RB4 can be represented well by the pseudo-second-order model and pseudo-first-order model, respectively. In addition, the adsorption isotherm data can be explained by the Langmuir isotherm model. Both hydrogel beads have acceptable adsorption selectivity and reusability for the study of selective adsorption and regeneration. Based on the effectiveness, selectivity, and reusability of these hydrogel beads, they can be treated as potential adsorbents for the removal of dyes in aqueous solutions.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2949
Author(s):  
Juan I. Burneo ◽  
Ángel Benítez ◽  
James Calva ◽  
Pablo Velastegui ◽  
Vladimir Morocho

Chemical compositions of plants are affected by the initial nutrient contents in the soil and climatic conditions; thus, we analyzed for the first time the effects of soil and leaf nutrients on the compositions of the essential oils (EOs) of Siparuna muricata in four different localities in Ecuador. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) and a gas chromatography/flame ionization detector (GC/FID). Enantiomeric distribution by GC/MS was determined, modifying the enantiomeric separation of β-pinene, limonene, δ-elemene, β-bourbonene, cis-cadina-1 (6), 4-diene and atractylone. A total of 44 compounds were identified. The most representative for L1 were guaiol, atractylone and 4-diene; for L2, cis-cadina-1(6),4-diene and myrcene; for L3, atractylone, myrcene and germacrene B; and finally, L4 germacrene B, myrcene and cis-cadina-1(6),4-diene. Correlations between soil- leaf chemical elements such as Al, Ca, Fe, Mg, Mn, N and Si in the different localities were significant with chemical composition of the essential oil of Siparuna muricata; however, correlations between soil and leaf K, P, and Na were not significant. Cluster and NMDS analysis showed high dissimilarity values of secondary metabolites between four localities related with changes in soil- leaf nutrients. Thus, the SIMPER routine revealed that not all secondary metabolites contribute equally to establishing the differences in the four localities, and the largest contributions are due to differences in guaiol, cis-cadina-1(6),4-diene, atractylone and germacrene. Our investigation showed for the first time the influences of altitude and soil- leaf chemical elements in the chemical composition of the EOs of S. muricata.


Sign in / Sign up

Export Citation Format

Share Document