scholarly journals Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants

Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 246 ◽  
Author(s):  
Saber Avestan ◽  
Mahmood Ghasemnezhad ◽  
Masoud Esfahani ◽  
Caitlin S. Byrt

Silicon application can improve productivity outcomes for salt stressed plants. Here, we describe how strawberry plants respond to treatments including various combinations of salt stress and nano-silicon dioxide, and assess whether nano-silicon dioxide improves strawberry plant tolerance to salt stress. Strawberry plants were treated with salt (0, 25 or 50 mM NaCl), and the nano-silicon dioxide treatments were applied to the strawberry plants before (0, 50 and 100 mg L−1) or after (0 and 50 mg L−1) flowering. The salt stress treatments reduced plant biomass, chlorophyll content, and leaf relative water content (RWC) as expected. Relative to control (no NaCl) plants the salt treated plants had 10% lower membrane stability index (MSI), 81% greater proline content, and 54% greater cuticular transpiration; as well as increased canopy temperature and changes in the structure of the epicuticular wax layer. The plants treated with nano-silicon dioxide were better able to maintain epicuticular wax structure, chlorophyll content, and carotenoid content and accumulated less proline relative to plants treated only with salt and no nano-silicon dioxide. Analysis of scanning electron microscopic (SEM) images revealed that the salt treatments resulted in changes in epicuticular wax type and thickness, and that the application of nano-silicon dioxide suppressed the adverse effects of salinity on the epicuticular wax layer. Nano-silicon dioxide treated salt stressed plants had increased irregular (smoother) crystal wax deposits in their epicuticular layer. Together these observations indicate that application of nano-silicon dioxide can limit the adverse anatomical and biochemical changes related to salt stress impacts on strawberry plants and that this is, in part, associated with epicuticular wax deposition.

2019 ◽  
Vol 72 (4) ◽  
Author(s):  
Boubaker Idder ◽  
Rachid Djibaoui ◽  
Hocine Abdelhakim Reguieg Yssaad ◽  
Abdelhak Djoudi

Salt stress affects the development and growth of plants in various ways as a result of its effect on water relationships, photosynthesis, and nutrient absorption by physiological and biochemical processes. Consequently, several researchers have increasingly studied the effect of plant growth promoting bacteria (PGPR) as promoters and enhancers under saline environment. The main goals of this study were to examine the manifested response of the broad bean plant under saline conditions and to evaluate the role of some <em>Pseudomonas</em> isolates in improving plant tolerance to salt stress. Three <em>Pseudomonas</em> strains were isolated (P1 and P7 from a saline soil and P15 from a vineyard soil). These isolates were screened by salinity and used as inoculums in <em>Vicia faba</em> plants (OTONO variety) irrigated with two saline solutions (NaCl; 100 and 150 mM L<sup>−1</sup>) and one without salinity. The results show that salinity decreased the fresh weight, total chlorophyll content, and the Na<sup>+</sup>/K<sup>+</sup> ratio, but it increased proline accumulation in inoculated and noninoculated plants. The inoculation of <em>V. faba</em> plants with P1, P7, and P15 strains significantly increased the production of fresh biomass in the presence and absence of salt stress, and positively affected the accumulation of proline and the Na<sup>+</sup>/K<sup>+</sup> ratio. The inoculation with bacterial strains increased the total chlorophyll content in plants at all salt treatment levels, especially the P1 strain that showed a significant effect.


2014 ◽  
Vol 33 (11) ◽  
pp. 2429-2437 ◽  
Author(s):  
Manzer H. Siddiqui ◽  
Mohamed H. Al-Whaibi ◽  
Mohammad Faisal ◽  
Abdulaziz A. Al Sahli

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Jiang ◽  
Bin Lu ◽  
Liantao Liu ◽  
Wenjing Duan ◽  
Yanjun Meng ◽  
...  

Abstract Background As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0–500 μM MT treatments with salt stress induced by treatment with 150 mM NaCl. Results Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). Conclusions Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


2017 ◽  
Vol 6 (3) ◽  
pp. 36
Author(s):  
Ghada Abdalla Lotfy Elkholy

Nanotechnology is extensively used in textile industries because it confers unique properties on fabrics.In this study, using nano silicon dioxide (SiO2)-coated nylon fabrics have created a lot of awareness appropriate to improve their functional properties. Using deferent con-struction of nano silicon dioxide (SiO2), the optimization construction are used to carry out treatments impart to improve the roughness, antistatic charge, sew ability, thickness; weight and UPF measurement are investigated. The study evaluates the possibility of using the scanning electron microscope (SEM) to show optimize the effect of treatment of nylon fabrics with nano silicon dioxide not only on the effect of treatment of nylon fabrics with nano silicon dioxide not only on their performance and appearance but also in garment man-ufacturing.


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Most Naznin ◽  
Mark Lefsrud ◽  
Valerie Gravel ◽  
Md Azad

The aim of this study was to investigate the different combinations of red (R) and blue (B) light emitting diode (LEDs’) lighting effects on growth, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and pepper in a growth chamber. The growth chamber was equipped with R and B light percentages based on total light intensity: 83% R + 17% B; 91% R + 9% B; 95% R + 5% B; and control was 100% R. The photosynthetic photon flux density (PPFD), photoperiod, temperature, and relative humidity of the growth chamber were maintained at 200 ± 5 μmol m−2 s−1, 16 h, 25/21 ± 2.5 °C, and 65 ± 5%, respectively. It is observed that the plant height of lettuce, kale, and pepper was significantly increased under 100% R light, whereas the plant height of spinach and basil did not show any significant difference. The total leaf number of basil and pepper was significantly increased under the treatment of 95% R + 5% B light, while no significant difference was observed for other plant species in the same treatment. Overall, the fresh and dry mass of the studied plants was increased under 91% R + 9% B and 95% R + 5% B light treatment. The significantly higher flower and fruit numbers of pepper were observed under the 95% R + 5% B treatment. The chlorophyll a, chlorophyll b, and total chlorophyll content of lettuce, spinach, basil, and pepper was significantly increased under the 91% R + 9% B treatment while the chlorophyll content of kale was increased under the 95% R + 5% B light treatment. The total carotenoid content of lettuce and spinach was higher in the 91% R + 9% B treatment whereas the carotenoid content of kale, basil, and pepper was increased under the 83% R + 17% B treatment. The antioxidant capacity of the lettuce, spinach, and kale was increased under the 83% R + 17% B treatment while basil and pepper were increased under the 91% R + 9% B treatment. This result indicates that the addition of B light is essential with R light to enhance growth, pigment content, and antioxidant capacity of the vegetable plant in a controlled environment. Moreover, the percentage of B with R light is plant species dependent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leangsrun Chea ◽  
Ana Meijide ◽  
Catharina Meinen ◽  
Elke Pawelzik ◽  
Marcel Naumann

The limited availability of phosphorus (P) in soils causes a major constraint in the productivity of potatoes, which requires increased knowledge of plant adaptation responses in this condition. In this study, six potato cultivars, namely, Agria, Lady Claire, Milva, Lilly, Sieglinde, and Verdi, were assessed for their responses on plant growth, leaf physiology, P use efficiency (PUE), and tuber quality with three P levels (Plow, Pmed, and Phigh). The results reveal a significant variation in the cultivars in response to different P availabilities. P-efficient cultivars, Agria, Milva, and Lilly, possessed substantial plant biomass, tuber yield, and high P uptake efficiency (PUpE) under low P supply conditions. The P-inefficient cultivars, Lady Claire, Sieglinde, and Verdi, could not produce tubers under P deprivation conditions, as well as the ability to efficiently uptake P under low-level conditions, but they were efficient in P uptake under high soil P conditions. Improved PUpE is important for plant tolerance with limited P availability, which results in the efficient use of the applied P. At the leaf level, increased accumulations of nitrate, sulfate, sucrose, and proline are necessary for a plant to acclimate to P deficiency-induced stress and to mobilize leaf inorganic phosphate to increase internal PUE and photosynthesis. The reduction in plant biomass and tuber yield under P-deficient conditions could be caused by reduced CO2 assimilation. Furthermore, P deficiency significantly reduced tuber yield, dry matter, and starch concentration in Agria, Milva, and Lilly. However, contents of tuber protein, sugars, and minerals, as well as antioxidant capacity, were enhanced under these conditions in these cultivars. These results highlight the important traits contributing to potato plant tolerance under P-deficient conditions and indicate an opportunity to improve the P efficiency and tuber quality of potatoes under deficient conditions using more efficient cultivars. Future research to evaluate molecular mechanisms related to P and sucrose translocation, and minimize tuber yield reduction under limited P availability conditions is necessary.


2021 ◽  
Author(s):  
Julio Armando Massange-Sánchez ◽  
Carla Vanessa Sánchez-Hernández ◽  
Rosalba Mireya Hernández-Herrera ◽  
Paola Andrea Palmeros-Suárez

Salinity is one of the most severe environmental problems worldwide and affects plant growth, reproduction, and crop yields by inducing physiological and biochemical changes due to osmotic and ionic shifts in plant cells. One of the principal modifications caused by osmotic stress is the accumulation of reactive oxygen species (ROS), which cause membrane damage and alter proteins, DNA structures, and photosynthetic processes. In response, plants increase their arsenal of antioxidant compounds, such as ROS scavenging enzymes and nonenzymatic elements like ascorbate, glutathione, flavonoids, tocopherols, and carotenoids, and their rates of osmolyte synthesis to conserve ion homeostasis and manage salt stress. This chapter describes the principal biochemical mechanisms that are employed by plants to survive under salt-stress conditions, including the most recent research regarding plant tolerance, and suggests strategies to produce valuable crops that are able to deal with soil salinity.


2019 ◽  
Vol 50 (3) ◽  
pp. 155-163 ◽  
Author(s):  
B. Talebi ◽  
M. Heidari ◽  
H. Ghorbani

Abstract The elevation of arsenic (As) content in soils is of considerable concern with respect to its uptake by plant and subsequent entry into wildlife and human food chains. The treatment of sorghum seedlings with As as NaH2As4O. 7H2O at various concentrations (A1 = 0, A2 = 20, A3 = 40 and A4 = 60 mg As kg−1 soil) and salinity at four different levels (S1 = 0, S2 = 3, S3 = 6 and S3 = 9 dS m−1) reduced fresh and dry weights of sorghum plants. The co-application of As and salinity increased the guaiacol peroxidase (GPX) activity in shoot and root tissues. The highest GPX activity in shoot and root tissues was obtained at S2A4 and S3A3 treatments, respectively. The activity of catalase (CAT) in shoot was not changed, but unlike the GPX activity, salinity and As decreased the CAT activity in root tissues. Concerning the photosynthesis pigments, salinity had no effect on the chlorophyll ‘a’, chlorophyll ‘b’ and carotenoid content in leaves, but the As treatment significantly decreased the content of both chlorophyll types. Salinity increased the anthocyanin content in leaves. There were negative correlation between soluble carbohydrates (r2 = −0.78**) and stomata conductance (r2 = −0.45**) and dry weight of the plant biomass in this study. By increasing the salinity and As concentration in root medium, soluble carbohydrate in leaves increased but salinity decreased the leaf stomata conductance.


Sign in / Sign up

Export Citation Format

Share Document