scholarly journals Bioactive Glass Applications in Dentistry

2019 ◽  
Vol 20 (23) ◽  
pp. 5960 ◽  
Author(s):  
Hans Erling Skallevold ◽  
Dinesh Rokaya ◽  
Zohaib Khurshid ◽  
Muhammad Sohail Zafar

At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.

Biomaterials ◽  
2004 ◽  
Vol 25 (27) ◽  
pp. 5857-5866 ◽  
Author(s):  
Richard M. Day ◽  
Aldo R. Boccaccini ◽  
Sandra Shurey ◽  
Judith A. Roether ◽  
Alastair Forbes ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 178-184 ◽  
Author(s):  
David Greenspan

Abstract In 1969, fifty years ago, a young professor of ceramic engineering created a 4-component glass to be used as a bone replacement material. That material became known as “Bioglass” and more generally as a class of materials known as bioactive glass. Those first experiments conducted by Dr. Larry Hench completely shifted the paradigm of how the biomaterials and medical communities look at the interactions between inorganic materials and tissues in the body. This article will touch on just a few highlights of the development of bioactive glasses and relate those to the concepts of bioactivity and tissue bonding.


Author(s):  
Valentina Miguez-Pacheco ◽  
Alejandro A. Gorustovich ◽  
Aldo R. Boccaccini ◽  
Judith A. Roether

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 978 ◽  
Author(s):  
Marina Luginina ◽  
Katharina Schuhladen ◽  
Roberto Orrú ◽  
Giacomo Cao ◽  
Aldo R. Boccaccini ◽  
...  

Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.


2018 ◽  
Vol 38 (3) ◽  
pp. 855-869 ◽  
Author(s):  
Preethi Balasubramanian ◽  
Teresa Büttner ◽  
Valentina Miguez Pacheco ◽  
Aldo R. Boccaccini

2021 ◽  
Author(s):  
Shreyasi Majumdar ◽  
Smriti Gupta ◽  
Sairam Krishnamurthy

Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autograft and allograft. In this context, many biomaterials...


2021 ◽  
Vol 14 (2) ◽  
pp. 75
Author(s):  
Nuha Al-Harbi ◽  
Hiba Mohammed ◽  
Yas Al-Hadeethi ◽  
Ahmed Samir Bakry ◽  
Ahmad Umar ◽  
...  

Regenerative medicine is a field that aims to influence and improvise the processes of tissue repair and restoration and to assist the body to heal and recover. In the field of hard tissue regeneration, bio-inert materials are being predominantly used, and there is a necessity to use bioactive materials that can help in better tissue–implant interactions and facilitate the healing and regeneration process. One such bioactive material that is being focused upon and studied extensively in the past few decades is bioactive glass (BG). The original bioactive glass (45S5) is composed of silicon dioxide, sodium dioxide, calcium oxide, and phosphorus pentoxide and is mainly referred to by its commercial name Bioglass. BG is mainly used for bone tissue regeneration due to its osteoconductivity and osteostimulation properties. The bioactivity of BG, however, is highly dependent on the compositional ratio of certain glass-forming system content. The manipulation of content ratio and the element compositional flexibility of BG-forming network developed other types of bioactive glasses with controllable chemical durability and chemical affinity with bone and bioactivity. This review article mainly discusses the basic information about silica-based bioactive glasses, including their composition, processing, and properties, as well as their medical applications such as in bone regeneration, as bone grafts, and as dental implant coatings.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
O. Sánchez-Aguinagalde ◽  
Ainhoa Lejardi ◽  
Emilio Meaurio ◽  
Rebeca Hernández ◽  
Carmen Mijangos ◽  
...  

Chitosan (CS) and poly (vinyl alcohol) (PVA) hydrogels, a polymeric system that shows a broad potential in biomedical applications, were developed. Despite the advantages they present, their mechanical properties are insufficient to support the loads that appear on the body. Thus, it was proposed to reinforce these gels with inorganic glass particles (BG) in order to improve mechanical properties and bioactivity and to see how this reinforcement affects levofloxacin drug release kinetics. Scanning electron microscopy (SEM), X-ray diffraction (XRD), swelling tests, rheology and drug release studies characterized the resulting hydrogels. The experimental results verified the bioactivity of these gels, showed an improvement of the mechanical properties and proved that the added bioactive glass does affect the release kinetics.


Sign in / Sign up

Export Citation Format

Share Document