scholarly journals The Role of Macrophages in Oocyte Donation Pregnancy: A Systematic Review

2020 ◽  
Vol 21 (3) ◽  
pp. 939 ◽  
Author(s):  
Xuezi Tian ◽  
Michael Eikmans ◽  
Marie-Louise van der Hoorn

The embryo of an oocyte donation (OD) pregnancy is completely allogeneic to the mother, which leads to a more serious challenge for the maternal immune system to tolerize the fetus. It is thought that macrophages are essential in maintaining a healthy pregnancy, by acting in immunomodulation and spiral arterial remodeling. OD pregnancies represent an interesting model to study complex immunologic interactions between the fetus and the pregnant woman since the embryo is totally allogeneic compared to the mother. Here, we describe a narrative review on the role of macrophages and pregnancy and a systematic review was performed on the role of macrophages in OD pregnancies. Searches were made in different databases and the titles and abstracts were evaluated by three independent authors. In total, four articles were included on OD pregnancies and macrophages. Among these articles, some findings are conflicting between studies, indicating that more research is needed in this area. From current research, we could identify that there are multiple subtypes of macrophages, having diverse biological effects, and that the ratio between subtypes is altered during gestation and in aberrant pregnancy. The study of macrophages’ phenotypes and their functions in OD pregnancies might be beneficial to better understand the maternal-fetal tolerance system.

2017 ◽  
Vol 10 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Maria Tziastoudi ◽  
Ioannis Stefanidis ◽  
Georgios M. Hadjigeorgiou ◽  
Konstantinos Stravodimos ◽  
Elias Zintzaras

2020 ◽  
Vol 21 (13) ◽  
pp. 4756
Author(s):  
Chiara Tersigni ◽  
Federica Meli ◽  
Caterina Neri ◽  
Azzurra Iacoangeli ◽  
Rita Franco ◽  
...  

The successful maternal tolerance of the semi-allogeneic fetus provides an apparent immunologic paradox. Indeed, deep invasion of placental trophoblast cells into maternal uterine tissue and the following growth of the fetus have to be tolerated by a pregnant woman’s immune system. Among the various possible protective mechanisms that may be involved in human pregnancy, the expression of a non-classical pattern of human leukocyte antigen (HLA) class I molecules and the complete lack of expression of HLA class II molecules in placental tissues seem to be the most relevant mechanisms of fetal escape from maternal immune recognition. The importance of HLA molecules in fetal toleration by the maternal immune system is highlighted by pregnancy complications occurring in cases of abnormal HLA molecule expression at the maternal–fetal interface. In this review, we summarize evidences about the role of placental HLA molecules in normal and pathological pregnancies.


2019 ◽  
Vol 10 ◽  
Author(s):  
Xiaoyuan Han ◽  
Mohammad S. Ghaemi ◽  
Kazuo Ando ◽  
Laura S. Peterson ◽  
Edward A. Ganio ◽  
...  

2020 ◽  
Vol 133 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Emanuele Chisari ◽  
Laura Rehak ◽  
Wasim S Khan ◽  
Nicola Maffulli

Abstract Introduction The role of the immune system in tendon healing relies on polymorphonucleocytes, mast cells, macrophages and lymphocytes, the ‘immune cells’ and their cytokine production. This systematic review reports how the immune system affects tendon healing. Sources of data We registered our protocol (registration number: CRD42019141838). After searching PubMed, Embase and Cochrane Library databases, we included studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. The PRISMA guidelines were applied, and risk of bias and the methodological quality of the included studies were assessed. We excluded all the articles with high risk of bias and/or low quality after the assessment. We included 62 articles assessed as medium or high quality. Areas of agreement Macrophages are major actors in the promotion of proper wound healing as well as the resolution of inflammation in response to pathogenic challenge or tissue damage. The immune cells secrete cytokines involving both pro-inflammatory and anti-inflammatory factors which could affect both healing and macrophage polarization. Areas of controversy The role of lymphocytes, mast cells and polymorphonucleocytes is still inconclusive. Growing points The immune system is a major actor in the complex mechanism behind the healing response occurring in tendons after an injury. A dysregulation of the immune response can ultimately lead to a failed healing response. Areas timely for developing research Further studies are needed to shed light on therapeutic targets to improve tendon healing and in managing new way to balance immune response.


2021 ◽  
Vol 23 ◽  
Author(s):  
S. A. Ibrahim ◽  
A. Y. Afify ◽  
I. O. Fawzy ◽  
N. El-Ekiaby ◽  
A. I. Abdelaziz

Abstract Epigenetic modifications have been well documented in autoimmune diseases. MicroRNAs (miRNAs), in particular, have long intrigued scientists in the field of autoimmunity. Owing to its central role in the development of the immune system, microRNA-155 (miR-155) is deeply involved in systemic lupus erythematosus (SLE). Despite the advancements made in treating SLE, the disease still remains incurable. Therefore, recent attention has been drawn to the manipulation of epigenetics in the development of curative treatments. In fact, it is a widely held view that miRNA-targeted therapy is a new glimmer of hope in the treatment of autoimmune diseases. However, the duplicity of miRNAs should not be overlooked. A single miRNA can target several mRNAs, and some mRNAs may possess opposing functions. In this review, we highlight the role of miR-155 as a biomarker and review its functions in SLE patients and animal models while discussing possible reasons behind inconsistencies across studies.


2016 ◽  
Vol 115 ◽  
pp. 40
Author(s):  
F.H.J. Claas ◽  
L. Lashley ◽  
M.-L. van der Hoorn

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Christina G. S. Palmer

Prenatal/obstetric complications are implicated in schizophrenia susceptibility. Some complications may arise from maternal-fetal genotype incompatibility, a term used to describe maternal-fetal genotype combinations that produce an adverse prenatal environment. A review of maternal-fetal genotype incompatibility studies suggests that schizophrenia susceptibility is increased by maternal-fetal genotype combinations at theRHDandHLA-Bloci. Maternal-fetal genotype combinations at these loci are hypothesized to have an effect on the maternal immune system during pregnancy which can affect fetal neurodevelopment and increase schizophrenia susceptibility. This article reviews maternal-fetal genotype incompatibility studies and schizophrenia and discusses the hypothesized biological role of these ‘‘incompatibility genes’’. It concludes that research is needed to further elucidate the role ofRHDandHLA-Bmaternal-fetal genotype incompatibility in schizophrenia and to identify other genes that produce an adverse prenatal environment through a maternal-fetal genotype incompatibility mechanism. Efforts to develop more sophisticated study designs and data analysis techniques for modeling maternal-fetal genotype incompatibility effects are warranted.


2020 ◽  
Vol 17 (3) ◽  
Author(s):  
Amir Dehghani-Samani ◽  
Mahsa Kamali ◽  
Fatemeh Hoseinzadeh-Chahkandak

Background: Vitamins had been reported repeatedly as important micronutrients, on immune system. Objectives: In this study roles of vitamins on immune system were discussed in detail, as well as their probable roles on the prevention/treatment of viral infections including COVID-19 infection. Method: Totally, 57 articles had been extracted from common indexing databases/websites, which were then classified to different main groups and subgroups. The roles of Vitamins on the prevention and/or treatment of COVID-19 infection had been also reviewed, and finally their contents had been purified and listed into different categorizations. Moreover, differential percentages of each vitamin related studies, differential percentages of studies on the association with COVID-19, and mechanisms of the vitamins effects on immune system had been reviewed for each vitamin. Results: In this study, the reviewed articles had been categorized into 5 main vitamin groups and 7 subgroups for vitamin B family groups. The most studied vitamin group was identified to be the B vitamins group followed by the vitamins A, D, and E groups that were ranked in next steps, respectively. However, in individual comparison of vitamins, vitamin A had been identified as the vitamin with maximum number of studies. Accordingly, more than half of these studies (66.66%) had focused on the immune-modulatory effects of vitamin D on the prevention and/or treatment of COVID-19 infection. Conclusions: Briefly, this study showed that, among all vitamins, roles of vitamin A, C, D, and E are more defined and maybe more effective on immune system, which emphasizes on the importance of vitamins in prevention of several viral infections like COVID-19. Therefore, sufficient vitamin intake can be recommended to prevent viral infections like COVID-19 infection.


2018 ◽  
Vol 27 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Julia Szekeres-Bartho

This review aims to provide a brief historical overview of the feto-maternal immunological relationship, which profoundly influences the outcome of pregnancy. The initial question posed in the 1950s by Medawar [Symp Soc Exp Biol. 1953; 7: 320–338] was based on the assumption that the maternal immune system recognizes the fetus as an allograft. Indeed, based on the association between HLA-matching and spontaneous miscarriage, it became obvious that immunological recognition of pregnancy is required for a successful gestation. The restricted expression of polymorphic HLA antigens on the trophoblast, together with the presence of nonpolymorphic MHC products, excludes recognition by both T and NK cells of trophoblast-presented antigens; however, γδ T cells, which constitute the majority of decidual T cells, are likely candidates. Indeed, a high number of activated, progesterone receptor-expressing γδ T cells are present in the peripheral blood of healthy pregnant women and, in the presence of progesterone, these cells secrete an immunomodulatory protein called progesterone-induced blocking factor (PIBF). As early as in the peri-implantation period, the embryo communicates with the maternal immune system via PIBF containing extracellular vesicles. PIBF contributes to the dominance of Th2-type reactivity which characterizes normal pregnancy by inducing increased production of Th2 cytokines. The high expression of this molecule in the decidua might be one of the reasons for the low cytotoxic activity of decidual NK cells.


Sign in / Sign up

Export Citation Format

Share Document