scholarly journals Transcriptional Regulation of Genes by Ikaros Tumor Suppressor in Acute Lymphoblastic Leukemia

2020 ◽  
Vol 21 (4) ◽  
pp. 1377
Author(s):  
Pavan Kumar Dhanyamraju ◽  
Soumya Iyer ◽  
Gayle Smink ◽  
Yevgeniya Bamme ◽  
Preeti Bhadauria ◽  
...  

Regulation of oncogenic gene expression by transcription factors that function as tumor suppressors is one of the major mechanisms that regulate leukemogenesis. Understanding this complex process is essential for explaining the pathogenesis of leukemia as well as developing targeted therapies. Here, we provide an overview of the role of Ikaros tumor suppressor and its role in regulation of gene transcription in acute leukemia. Ikaros (IKZF1) is a DNA-binding protein that functions as a master regulator of hematopoiesis and the immune system, as well as a tumor suppressor in acute lymphoblastic leukemia (ALL). Genetic alteration or functional inactivation of Ikaros results in the development of high-risk leukemia. Ikaros binds to the specific consensus binding motif at upstream regulatory elements of its target genes, recruits chromatin-remodeling complexes and activates or represses transcription via chromatin remodeling. Over the last twenty years, a large number of Ikaros target genes have been identified, and the role of Ikaros in the regulation of their expression provided insight into the mechanisms of Ikaros tumor suppressor function in leukemia. Here we summarize the role of Ikaros in the regulation of the expression of the genes whose function is critical for cellular proliferation, development, and progression of acute lymphoblastic leukemia.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2465-2465
Author(s):  
Sinsa Dovat ◽  
Kimberly J Payne ◽  
Chunhua Song

Abstract Abstract 2465 The Ikaros gene encodes a DNA-binding zinc finger protein that acts as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Ikaros exerts its tumor suppressor activity by binding to the upstream regulatory regions of its target genes resulting in chromatin remodeling and transcriptional repression of the target gene. We have previously reported that Ikaros is a substrate for Protein Phosphatase 1 (PP1), and that PP1 regulates the DNA-binding affinity of Ikaros and its subcellular localization to pericentromeric heterochromatin. PP1 has been postulated to possess tumor suppressor activity, although the mechanisms were unknown. We hypothesize that PP1 positively regulates the tumor suppressor function of Ikaros in ALL. In this report, we studied the role of PP1 in regulating Ikaros function as a transcriptional regulator of its target genes in acute lymphoblastic leukemia (ALL), and in controlling the sensitivity of leukemia cells to radiation. An Ikaros construct with a mutated PP1 interaction site (IK 465/7A) was tested for: 1) association with histone deacetylase (HDAC) chromatin remodeling complex by co-immunoprecipitation; 2) in vivo DNA-binding to promoter regions of known Ikaros target genes by quantitative chromatin immunoprecipitation (qChIP); and 3) direct transcriptional repression of Ikaros target genes, by transient luciferase reporter assay. Our results demonstrate that the loss of interaction with PP1 results in hyperphosphorylation of Ikaros protein resulting in an inability of Ikaros to interact with the HDAC chromatin remodeling complex. The loss of PP1 interaction impaired Ikaros' ability to function as transcriptional repressor due to poor DNA-binding affinity toward the promoters of Ikaros target genes. The introduction of phosphoresistant (alanine) mutations at CK2 kinase phosphorylation sites on the Ikaros protein (IK 465/7A+A11 mutant) restored Ikaros' ability to bind the histone deacetylase complex (including HDAC1 and HDAC2 proteins), as well as its transcriptional repressor function and DNA-binding affinity toward promoters of its target genes. These data strongly suggest that dephosphorylation of Ikaros by PP1 is essential for its function in chromatin remodeling and regulation of gene expression. To study the role of PP1 in ALL, we treated primary ALL cells with specific inhibitors of PP1 and studied the impact PP1 inhibition on ALL cells. Our data demonstrate that the inhibition of PP1 activity results in decreased sensitivity of ALL cells to radiation treatment, and that these changes correlate with a decrease in Ikaros' DNA-binding affinity (as evidenced by qChIP), and a loss of Ikaros function as a direct regulator of target gene transcription. These studies identified PP1 as an important signal transduction pathway that controls the proliferation of ALL cells. Our results suggest that PP1-mediated dephosphorylation and CK2 kinase-mediated phosphorylation are two opposing signaling pathways that regulate Ikaros function as a tumor suppressor in ALL, as well as the resistance of leukemia cells to radiation treatment. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 64 (3) ◽  
pp. 735-739 ◽  
Author(s):  
Chandrika S Gowda ◽  
Chunhua Song ◽  
Yali Ding ◽  
Malika Kapadia ◽  
Sinisa Dovat

Protein signaling and regulation of gene expression are the two major mechanisms that regulate cellular proliferation in leukemia. Discerning the function of these processes is essential for understanding the pathogenesis of leukemia and for developing the targeted therapies. Here, we provide an overview of one of the mechanisms that regulates gene transcription in leukemia. This mechanism involves the direct interaction between Casein Kinase II (CK2) and the Ikaros transcription factor. Ikaros (IKZF1) functions as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Impaired Ikaros function results in the development of high-risk leukemia. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. In vivo, Ikaros is a target for CK2, a pro-oncogenic kinase. CK2 directly phosphorylates Ikaros at multiple amino acids. Functional experiments showed that CK2-mediated phosphorylation of Ikaros, regulates Ikaros’ DNA binding affinity, subcellular localization and protein stability. Recent studies revealed that phosphorylation of Ikaros by CK2 regulates Ikaros binding and repression of the terminal deoxytransferase (TdT) gene in normal thymocytes and in T-cell ALL. Available data suggest that the oncogenic activity of CK2 in leukemia involves functional inactivation of Ikaros and provide a rationale for CK2 inhibitors as a potential treatment for ALL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3734-3734
Author(s):  
Sinisa Dovat ◽  
Chunhua Song ◽  
Xiaokang Pan ◽  
Yali Ding ◽  
Chandrika S. Gowda ◽  
...  

Abstract IKZF1 (Ikaros) encodes a kruppel-like zinc finger protein that is essential for normal hematopoiesis and acts as a tumor suppressor in acute lymphoblastic leukemia (ALL). The deletion and/or mutation of Ikaros is associated with the development of human T-cell and B-cell acute lymphoblastic leukemia (B-ALL) with poor outcome. In vivo, Ikaros binds DNA and regulates gene expression by chromatin remodeling. Since there is a paucity of known genes that are regulated by Ikaros, the molecular mechanisms through which Ikaros exerts its tumor suppressor function remain unknown. Here we describe studies that identify the targets and mechanisms of Ikaros-mediated epigenetic regulation in human B-ALL. We used chromatin immunoprecipitation coupled with next generation sequencing (ChIP-seq) to identify target genes that are bound by Ikaros in vivo in human B-ALL, and to define epigenetic patterns associated with Ikaros binding. ChIP-seq revealed a large set of Ikaros target genes that contain a characteristic Ikaros binding motif. The largest group of genes that are direct Ikaros targets included genes that are essential for cell cycle progression. These included CDC2, CDC7, CDK2 and CDK6 genes whose deregulation is associated with malignant transformation. The strong binding of ikaros to the promoters of cell cycle-promoting genes was confirmed by quantitative immunoprecipitation in primary leukemia cells. To establish whether Ikaros directly regulates transcription of the cell cycle-promoting genes, their expression was measured in B-ALL cells that were transduced with either a retroviral vector that contains Ikaros, or a control vector. Target gene expression was monitored by qRT-PCR. Ikaros strongly repressed transcription of the cell cycle-promoting genes, which resulted in cell cycle arrest. Global epigenetic profiling using ChIP-seq suggested that Ikaros represses cell cycle-promoting genes by inducing epigenetic changes that are consistent with repressive chromatin. High-resolution epigenetic profiling of the upstream regulatory elements of the cell cycle-promoting genes targeted by Ikaros showed that increased Ikaros expression results in the formation of heterochromatin, which is characterized by the presence of the H3K9me3 histone modification and associated transcriptional repression. Functional analysis revealed that phosphorylation of Ikaros by the oncogenic protein. Casein kinase II (CK2), impairs its function as a transcriptional repressor of the cell cycle-regulating genes. Inhibition of CK2 by specific inhibitors enhances Ikaros-mediated repression of the cell cycle-regulating genes resulting in cessation of cellular proliferation and cell cycle arrest in vitro and in vivo in a B-cell ALL preclinical model. This was associated with increased Ikaros binding and the formation of heterochromatin at upstream regulatory elements of the cell cycle-promoting genes. Our results provide evidence that Ikaros functions as a repressor of cell cycle-promoting genes in B-ALL by directly binding their promoters and inducing the formation of heterochromatin with characteristic H3K9me3 histone modifications Ikaros repressor function is negatively regulated by CK2 kinase in B-cell ALL. Inhibition of CK2 enhances Ikaros mediated-repression of cell cycle-promoting genes resulting in an anti-leukemia effect in a preclinical model of B-cell ALL. Presented data identified the mechanism of action of CK2 inhibitors and demonstrated their efficacy in B-cell ALL preclinical model. Results support the use of CK2 inhibitors in Phase I clinical trial. Supported by National Institutes of Health R01 HL095120 and a St. Baldrick’s Foundation Career Development Award (to S.D.). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2501-2501
Author(s):  
Kyster Nanan ◽  
David P LeBrun

Abstract E2A-PBX1 (EP1) is a chimeric oncogenic transcription factor expressed consequent to the 1;19 chromosomal translocation in cases of acute lymphoblastic leukemia (ALL). EP1 can induce transcription of reporter genes and EP1-driven oncogenesis requires direct binding of EP1 with the transcriptional co-activator and histone acetyltransferase p300. Therefore, we hypothesized that EP1 recruits p300 and other co-activators to cis-acting regulatory elements throughout the genome thereby inducing or maintaining transcription of target genes some of which contribute to the neoplastic phenotype. Here we have used chromatin immunoprecipitation followed by next generation DNA sequencing (ChIP-seq) to identify and characterize EP1-bound sites across the genome of the t(1;19)-associated, ALL-derived cell line RCH-ACV. ChIP was performed with an anti-FLAG antibody using sheared chromatin prepared from RCH-ACV cells that stably expressed FLAG-tagged EP1; ChIP from parent RCH-ACV cells not expressing FLAG-EP1 served as a negative control for peak calling. Parallel immunoprecipitations were performed with antibodies for p300 and the chromatin marks H3K4me3, H3K4me1 and H3K27me3. Sequencing of DNA purified from the immunoprecipitated material and of total RNA (RNA-seq) was carried out commercially by BGI whereas bioinformatic analyses were performed in-house. Bioinformatic analysis of data from replicate samples identified 3166 EP1 binding peaks across the RCH-ACV genome (irreproducible discovery rate threshold <0.01). Most EP1 binding sites were located in intronic (1408 sites) or intergenic (1346 sites) regions. Binding site consensus analysis showed overrepresentation of binding motifs for REST, CTCF, MYC, PAX5 and other transcription factors suggesting indirect recruitment of EP1 to DNA mediated by protein-protein interactions. EP1-bound regions were enriched for p300 binding (Figure 1), consistent with the documented importance of p300 recruitment in EP1 oncogenesis. A particular association with H3K4me3 relative to H3K4me1 or H3K27me3 (Figure 2) suggested association with active promoters. Three hundred and forty-two genes had EP1 binding sites within 1000 bp of their transcriptional start sites and these genes were associated with differentially abundant transcription (Figure 3, P<0.001). Querying the online Mammalian Phenotype Ontology tool with genes associated with EP1 binding generated terms that were obviously rich in phenotypes pertaining to B-lymphopoiesis. In summary, our results suggest that EP1 recruits p300 and other co-activators to transcriptionally active chromatin in ALL cells. Results from studies currently underway to confirm the dependency of target gene expression and p300 recruitment upon binding of EP1 at specific binding sites will be presented. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 231-231
Author(s):  
Shuangli Mi ◽  
Jun Lu ◽  
Miao Sun ◽  
Zejuan Li ◽  
Hao Zhang ◽  
...  

Abstract Human acute leukemias include acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). It is estimated that 5,200 and 13,410 cases will be diagnosed with and 1,420 and 8,990 will die of ALL and AML, respectively, in the United States in 2007. Although remarkable progress has been made in the past decades in the treatment and in the understanding of the biology of acute leukemias, the 5-year overall survival rate of patients with AML is only approximately 22%, which is much lower than that of ALL patients (65%; http://seer.cancer.gov). One of the most exciting recent findings is the discovery of an abundant class of small (∼22 nt), non-(protein-)coding RNAs, called microRNAs (miRNAs, miRs), which can function as oncogenes and tumor suppressors, whose deregulation is clearly associated with the development of cancer. To understand the distinct mechanisms in leukemogenesis between ALL and AML and to identify novel markers for diagnosis and treatment of acute leukemia, we have performed a large-scale miRNA expression profiling assay with a bead-based flow cytometric method and identified 27 differentially expressed miRNAs. Among them, miR-128a and b are significantly overexpressed while let-7b and miR-223 are significantly down-regulated in ALL compared to AML. They are the most discriminatory miRNAs between ALL and AML. Using the expression signatures of any two of the four most significantly discriminatory miRNAs in diagnosis of ALL and AML resulted in an accuracy rate of 97–100%. The differential expression patterns of these four miRNAs were validated further through quantitative real-time PCR on 98 acute leukemia samples covering most of the common cytogenetic subtypes of AML and B- and T-cell ALL, along with 10 normal controls. Furthermore, we found that overexpression of miR-128a and b in ALL was at least partly associated with hypomethylation, rather than amplification of DNA locus copy. Moreover, several important target genes of these four miRNAs have also been validated. We are currently exploring the role of these four miRNAs and their critical target genes in leukemogenesis and in the determination of lineage fate during leukemia development using in vitro and in vivo models. This work will enhance our understanding of the biological role of these miRNAs and their targets in leukemogenesis, and in determining the lineage fate of acute leukemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 413-413
Author(s):  
Charles Mullighan ◽  
Jinghui Zhang ◽  
Lawryn H. Kasper ◽  
Stephanie Lerach ◽  
Debbie Payne-Turner ◽  
...  

Abstract Abstract 413 Relapsed acute lymphoblastic leukemia (ALL) is a leading cause of death due to disease in young people, but the biologic determinants of treatment failure remain poorly understood. To identify novel sequence mutations contributing to relapsed in ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. The cohort included B-progenitor ALL with high hyperdiploidy (N=3), TCF3-PBX1 (N=1), ETV6-RUNX1 (N=3), rearrangement of MLL (N=3), BCR-ABL1 (N=3), and low hyperdiploid, pseudodiploid, or miscellaneous karyotypes (N=10). This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including mutations in the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 63 diagnosis-relapse cases and 200 acute leukaemia cases that did not relapse found that 19% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase (HAT) CREB-binding protein (CBP). The mutations were either present at diagnosis, acquired at relapse, or duplicated to homozygosity at the time of relapse. Moreover, several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations confer a selective advantage and promote resistance to therapy. The mutations either resulted in truncated alleles or deleterious substitutions in highly conserved residues of the HAT domain. To examine the functional consequences of the mutations, we introduced wild type or mutant Crebbp alleles into Cbp/Ep300flox/flox murine embryonic fibroblasts, (dKO MEFs), and examined histone acetylation, expression of CREBBP target genes, and cellular proliferation. The HAT domain mutations resulted in impaired acetylation of the key Crebbp substrate, H3K18, and resulted in impaired transcriptional regulation of multiple CREBBP targets and pathways, including cAMP, dsRNA and dexamethasone responsive genes. The latter observation suggests that CREBBP mutations may directly result in resistance to corticosteroid therapy, which is a hallmark of high risk ALL. Together, these data these results extend the landscape of genetic alterations in leukemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL. Disclosures: Pui: EUSA Pharma: Honoraria; Enzon: Honoraria; Sanofi-Aventis: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4332-4332
Author(s):  
Elyse C Page ◽  
Susan L Heatley ◽  
Jacqueline Rehn ◽  
David T Yeung ◽  
Paul Q Thomas ◽  
...  

Abstract Introduction Children with Down Syndrome (DS) frequently develop hematological malignancies including acute lymphoblastic leukemia (ALL), however, the genomic basis for the predisposition to DS-ALL remains unknown. DS-ALL is associated with increased rates of relapse, chemotherapy related toxicity and poor overall survival compared to non-DS patients. The P2RY8-CRLF2 (CRLF2r) gene fusion, the result of deletion of the pseudoautosomal region 1 (PAR1) on the X/Y chromosome (chr), has been identified in 60% of DS-ALL (+21) patients and 30% of iAMP21 (intrachromosomal amplification of chr21) ALL patients compared to only 5-16% of other B-ALL patients. The high mobility group nucleosome binding protein 1, encoded by HMGN1 on chr21 may play a role in DS-ALL leukemogenesis, due to its demethylase activity associated with transcriptional activation. Methods mRNA seq was performed on the blast cells of 76 ALL patients using the Universal Plus mRNA-seq with NuQuant kit. FusionCatcher, SOAPfuse and JAFFA were used to identify fusions and featureCounts used for mRNA expression of STAR (v2.7.3a) aligned BAM files. CRISPR/Cas9 gRNAs targeting P2RY8 intron 1 or CRLF2 5' UTR created the 320 KB (PAR1) deletion. Cas9/gRNAs were transduced into Jurkat cells ± HMGN1 overexpression, activated with doxycycline and stained with TSLPR (CRLF2/IL-7Rα dimer) for single cell sort and clonal expansion. Phosphorylated proteins were measured by intracellular flow cytometry and SYBR Green RQ-PCR was used for mRNA expression. Results Significantly higher HMGN1 expression was identified in CRLF2r ALL patients, compared to the control (BCR-ABL1+ patients. Fig. 1A; p&lt;0.0001). There was no significant difference in HMGN2 (p=0.7881) or JAK2 (p=0.1171) control genes between groups. Of the CRLF2r ALL patients, 26% harbored +21, and 5% iAMP21, strongly suggesting a relationship between chr21, HMGN1 and the CRLF2r fusion. To further understand the role of HMGN1 in CRLF2r development, HMGN1 was overexpressed (1.5-fold; HMGN1H) in Jurkat Cas9 cells to represent a trisomy level of expression. gRNAs targeting P2RY8 and CRLF2 were activated in cells ± HMGN1H with undirected repair. TSLPR surface and CRLF2 mRNA expression were higher in CRLF2r + HMGN1H cells compared to CRLF2r only cells (Fig. 1B,C; p=0.034 and &lt;0.001 respectively). This suggests higher HMGN1 expression significantly predisposed to PAR1 deletion and formation of CRLF2r fusion after a double stranded DNA break (DSB) versus repair where HMGN1 expression is normal. This is consistent with higher HMGN1 expression observed in patients with CRLF2r. There was also increased gene editing activity in CRLF2r + HMGN1H cells, identified through T7 gene editing assay, compared to CRLF2r only cells. CRLF2r + HMGN1H cells also demonstrated significantly increased pSTAT5 (MFI: 2359 ± 1; Fig. 1D), pAKT (MFI: 2339 ± 6; Fig. 1E) and pERK (MFI: 2478 ± 48; Fig. 1F) compared to CRLF2r only cells (MFI pSTAT5: 1910 ± 10; pAKT: 1727 ± 14; pERK: 1946 ± 6; all p&lt;0.001), consistent with the data observed in CRLF2r patients, and confirming cooperation between CRLF2 and HMGN1. CRLF2r + HMGN1H cells demonstrated reduced H3K27me3 (MFI: 1 ± 0.07) compared to CRLF2r only cells (MFI: 1.6 ± 0.03; p=0.003) and higher expression levels of STAT5 target genes (BCL2, CDKN1,MCL1and MYC). Conclusion The P2RY8-CRLF2 (CRLF2r) gene fusionis prevalent in DS, +21 and iAMP21 ALL patients. Here, we demonstrate that CRLF2r is associated with high expression of HMGN1 (chr21)in ALL patient cells . Using CRISPR/Cas9 in an in vitro model, we demonstrate that enforced high expression of HMGN1 alters DSB repair mechanism, favoring PAR1 deletion and the subsequent formation of the P2RY8-CRLF2 gene fusion, with attendant higher expression of STAT5 target genes. Understanding the role of HMGN1 in the disproportionate number of DS-ALL patients who are diagnosed with CRLF2r has the potential to lead to novel therapeutic interventions, in this high-risk group of patients where efficacious therapeutic options are currently poor. Figure 1 Figure 1. Disclosures Yeung: BMS: Honoraria, Research Funding; Amgen: Honoraria; Novartis: Honoraria, Research Funding; Pfizer: Honoraria. White: Novartis: Research Funding; BMS: Honoraria, Research Funding.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3802-3802
Author(s):  
Alejandro Gutierrez ◽  
Takaomi Sanda ◽  
Stuart Winter ◽  
Richard S. Larson ◽  
Lewis B. Silverman ◽  
...  

Abstract In an effort to further unravel the molecular pathogenesis of T cell acute lymphoblastic leukemia (T-ALL), we performed array CGH on diagnostic specimens from 47 pediatric patients with T-ALL. The LEF1 transcription factor is best known as a positive mediator of oncogenic β-catenin signaling, and it is required for the expression of MYC, Cyclin D1 and Survivin in some contexts, including some normal hematopoietic progenitors. Additionally, Lef1 has been shown to be required for the survival of murine Notch-dependent T cell lymphoma cells. We were thus surprised to find highly focal deletions of LEF1 in 10.6 % (n = 5 of 47) of primary T-ALL patient samples, with 3 cases harboring homozygous deletions and 2 harboring heterozygous deletions of this locus. These deletions involved no other known genes. We then sequenced this gene in 45 of these cases and found heterozygous mutations in 3 additional T-ALL samples, including 2 cases with frameshift mutations predicted to truncate the protein prior to its context-dependent activation and HMG box domains, and one case with an Asp85Asn substitution. Seven of the eight samples harboring LEF1 abnormalities also had mutations in the heterodimerization or PEST domains of NOTCH1. In an effort to characterize the biologic consequences of LEF1 loss in T-ALL, we took advantage of expression microarrays that were previously performed on most of these samples. LEF1 loss defines a novel T-ALL subtype characterized by arrest at the CD1-positive early cortical stage, and whose gene expression profile resembles that of HOX11-positive cases, although expression of HOX11 was generally low in these samples. Loss of LEF1 was mutually exclusive to overexpression of TAL1 and of the HOXA/MEIS1 cluster. Interestingly, LEF1-negative T-ALL cases were associated with increased expression of MYC, and gene set enrichment analysis identified a significant association between LEF1 loss and upregulation of MYC target genes. In addition to its role as a transcriptional activator in the setting of active WNT/β-catenin signaling, LEF1 can also act as a transcriptional repressor in some cellular contexts. Experiments are currently underway to establish the mechanism mediating the tumor suppressor activity of LEF1 in T-ALL.


Epigenomics ◽  
2020 ◽  
Vol 12 (22) ◽  
pp. 1949-1955
Author(s):  
Angela Gutierrez-Camino ◽  
Chantal Richer ◽  
Pascal St-Onge ◽  
Elixabet Lopez-Lopez ◽  
Ana Carbone Bañeres ◽  
...  

Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.


Blood ◽  
2020 ◽  
Vol 136 (8) ◽  
pp. 946-956 ◽  
Author(s):  
Minjun Yang ◽  
Setareh Safavi ◽  
Eleanor L. Woodward ◽  
Nicolas Duployez ◽  
Linda Olsson-Arvidsson ◽  
...  

Abstract Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene in 13q12.2 are among the most common driver events in acute leukemia, leading to increased cell proliferation and survival through activation of the phosphatidylinositol 3-kinase/AKT-, RAS/MAPK-, and STAT5-signaling pathways. In this study, we examine the pathogenetic impact of somatic hemizygous 13q12.2 microdeletions in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) using 5 different patient cohorts (in total including 1418 cases). The 13q12.2 deletions occur immediately 5′ of FLT3 and involve the PAN3 locus. By detailed analysis of the 13q12.2 segment, we show that the deletions lead to loss of a topologically associating domain border and an enhancer of FLT3. This results in increased cis interactions between the FLT3 promoter and another enhancer located distally to the deletion breakpoints, with subsequent allele-specific upregulation of FLT3 expression, expected to lead to ligand-independent activation of the receptor and downstream signaling. The 13q12.2 deletions are highly enriched in the high-hyperdiploid BCP ALL subtype (frequency 3.9% vs 0.5% in other BCP ALL) and in cases that subsequently relapsed. Taken together, our study describes a novel mechanism of FLT3 involvement in leukemogenesis by upregulation via chromatin remodeling and enhancer hijacking. These data further emphasize the role of FLT3 as a driver gene in BCP ALL.


Sign in / Sign up

Export Citation Format

Share Document