scholarly journals Chemical Defoliant Promotes Leaf Abscission by Altering ROS Metabolism and Photosynthetic Efficiency in Gossypium hirsutum

2020 â—½  
Vol 21 (8) â—½  
pp. 2738 â—½  
Author(s):  
Dingsha Jin â—½  
Xiangru Wang â—½  
Yanchao Xu â—½  
Huiping Gui â—½  
Hengheng Zhang â—½  
...  

Chemical defoliation is an important part of cotton mechanical harvesting, which can effectively reduce the impurity content. Thidiazuron (TDZ) is the most used chemical defoliant on cotton. To better clarify the mechanism of TDZ promoting cotton leaf abscission, a greenhouse experiment was conducted on two cotton cultivars (CRI 12 and CRI 49) by using 100 mg L−1 TDZ at the eight-true-leaf stage. Results showed that TDZ significantly promoted the formation of leaf abscission zone and leaf abscission. Although the antioxidant enzyme activities were improved, the reactive oxygen species and malondialdehyde (MDA) contents of TDZ increased significantly compared with CK (water). The photosynthesis system was destroyed as net photosynthesis (Pn), transpiration rate (Tr), and stomatal conductance (Gs) decreased dramatically by TDZ. Furthermore, comparative RNA-seq analysis of the leaves showed that all of the photosynthetic related genes were downregulated and the oxidation-reduction process participated in leaf shedding caused by TDZ. Consequently, a hypothesis involving possible cross-talk between ROS metabolism and photosynthesis jointly regulating cotton leaf abscission is proposed. Our findings not only provide important insights into leaf shedding-associated changes induced by TDZ in cotton, but also highlight the possibility that the ROS and photosynthesis may play a critical role in the organ shedding process in other crops.

Plants â—½  
2021 â—½  
Vol 10 (2) â—½  
pp. 354
Author(s):  
El-Sayed M. Desoky â—½  
Elsayed Mansour â—½  
Mohamed M. A. Ali â—½  
Mohamed A. T. Yasin â—½  
Mohamed I. E. Abdul-Hamid â—½  
...  

The influence of 24-epibrassinolide (EBR24), applied to leaves at a concentration of 5 μM, on plant physio-biochemistry and its reflection on crop water productivity (CWP) and other agronomic traits of six maize hybrids was field-evaluated under semi-arid conditions. Two levels of irrigation water deficiency (IWD) (moderate and severe droughts; 6000 and 3000 m3 water ha−1, respectively) were applied versus a control (well-watering; 9000 m3 water ha−1). IWD reduced the relative water content, membrane stability index, photosynthetic efficiency, stomatal conductance, and rates of transpiration and net photosynthesis. Conversely, antioxidant enzyme activities and osmolyte contents were significantly increased as a result of the increased malondialdehyde content and electrolyte leakage compared to the control. These negative influences of IWD led to a reduction in CWP and grain yield-related traits. However, EBR24 detoxified the IWD stress effects and enhanced all the above-mentioned parameters. The evaluated hybrids varied in drought tolerance; Giza-168 was the best under moderate drought, while Fine-276 was the best under severe drought. Under IWD, certain physiological traits exhibited a highly positive association with yield and yield-contributing traits or CWP. Thus, exogenously using EBR24 for these hybrids could be an effective approach to improve plant and water productivity under reduced available water in semi-arid environments.


2007 â—½  
Vol 561-565 â—½  
pp. 1699-1701
Author(s):  
Nobuyuki Takahira â—½  
Takeshi Yoshikawa â—½  
Toshihiro Tanaka

Unusual wetting behavior of liquid Cu was found on a surface-oxidized iron substrate in reducing atmosphere. Liquid Cu wetted and spread very widely on the iron substrate when a droplet was attached with the substrate in Ar-10%H2 after the surface oxidation of the substrate. The oxidationreduction process fabricates a porous layer at the surface of the iron substrate. The pores in the porous iron layer are 3-dimensionally interconnected. Thus, liquid metals, which are contacted with the reduced iron samples, penetrate into these pores by capillary force to cause the unusual wetting behavior. It has been already confirmed that liquid Ag, Sn, In and Bi show this phenomenon onto surface-porous iron samples as well as liquid Cu. This unusual wetting behavior of a liquid metal has been correlated to the normal contact angle of the liquid metal on a flat iron substrate.


2021 â—½  
pp. 2151037
Author(s):  
Yu Meng â—½  
Qing Zhong â—½  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


Polymer Journal â—½  
10.1038/pj.2016.59 â—½  
2016 â—½  
Vol 48 (9) â—½  
pp. 969-972
Author(s):  
Hiroshi Takano â—½  
Masafumi Hiraishi â—½  
Shigeru Yaguchi â—½  
Satoru Iwata â—½  
Shin-ichiro Shoda â—½  
...  

2021 â—½  
Vol 12 â—½  
Author(s):  
Fangliu Yin â—½  
Youling Zeng â—½  
Jieyun Ji â—½  
Pengju Wang â—½  
Yufang Zhang â—½  
...  

The APETALA2 (AP2) and ethylene-responsive element-binding factor (ERF) gene family is one of the largest plant-specific transcription factor gene families, which plays a critical role in plant development and evolution, as well as response to various stresses. The TARGET OF EAT3 (TOE3) gene is derived from Halostachys caspica and belongs to the AP2 subfamily with two AP2 DNA-binding domains. Currently, AP2 family mainly plays crucial roles in plant growth and evolution, yet there are few reports about the role of AP2 in abiotic stress tolerance. Here, we report HcTOE3, a new cold-regulated transcription factor gene, which has an important contribution to freezing tolerance. The main results showed that the expression of HcTOE3 in the H. caspica assimilating branches was strongly induced by different abiotic stresses, including high salinity, drought, and extreme temperature (heat, chilling, and freezing), as well as abscisic acid and methyl viologen treatments. Overexpressing HcTOE3 gene (OE) induced transgenic Arabidopsis plant tolerance to freezing stress. Under freezing treatment, the OE lines showed lower content of malondialdehyde and electrolyte leakage and less accumulation of reactive oxygen species compared with the wild type. However, the survival rates, antioxidant enzyme activities, and contents of osmotic adjustment substance proline were enhanced in transgenic plants. Additionally, the OE lines increased freezing tolerance by up-regulating the transcription level of cold responsive genes (CBF1, CBF2, COR15, COR47, KIN1, and RD29A) and abscisic acid signal transduction pathway genes (ABI1, ABI2, ABI5, and RAB18). Our results suggested that HcTOE3 positively regulated freezing stress and has a great potential as a candidate gene to improve plant freezing tolerance.


2019 â—½  
Vol 20 (12) â—½  
pp. 2855 â—½  
Author(s):  
Linyuan Shen â—½  
Mailin Gan â—½  
Qianzi Tang â—½  
Guoqing Tang â—½  
Yanzhi Jiang â—½  
...  

The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.


Sign in / Sign up

Export Citation Format

Share Document