scholarly journals Hypercholesterolemia Interferes with Induction of miR-125b-1-3p in Preconditioned Hearts

2020 ◽  
Vol 21 (11) ◽  
pp. 3744
Author(s):  
Márton R. Szabó ◽  
Renáta Gáspár ◽  
Márton Pipicz ◽  
Nóra Zsindely ◽  
Petra Diószegi ◽  
...  

Ischemic preconditioning (IPre) reduces ischemia/reperfusion (I/R) injury in the heart. The non-coding microRNA miR-125b-1-3p has been demonstrated to play a role in the mechanism of IPre. Hypercholesterolemia is known to attenuate the cardioprotective effect of preconditioning; nevertheless, the exact underlying mechanisms are not clear. Here we investigated, whether hypercholesterolemia influences the induction of miR-125b-1-3p by IPre. Male Wistar rats were fed with a rodent chow supplemented with 2% cholesterol and 0.25% sodium-cholate hydrate for 8 weeks to induce high blood cholesterol levels. The hearts of normo- and hypercholesterolemic animals were then isolated and perfused according to Langendorff, and were subjected to 35 min global ischemia and 120 min reperfusion with or without IPre (3 × 5 min I/R cycles applied before index ischemia). IPre significantly reduced infarct size in the hearts of normocholesterolemic rats; however, IPre was ineffective in the hearts of hypercholesterolemic animals. Similarly, miR-125b-1-3p was upregulated by IPre in hearts of normocholesterolemic rats, while in the hearts of hypercholesterolemic animals IPre failed to increase miR-125b-1-3p significantly. Phosphorylation of cardiac Akt, ERK, and STAT3 was not significantly different in any of the groups at the end of reperfusion. Based on these results we propose here that hypercholesterolemia attenuates the upregulation of miR-125b-1-3p by IPre, which seems to be associated with the loss of cardioprotection.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243220
Author(s):  
Katharina Feige ◽  
Annika Raupach ◽  
Carolin Torregroza ◽  
Jan Muehlenbernd ◽  
Martin Stroethoff ◽  
...  

Coronary effluent collected from ischemic preconditioning (IPC) treated hearts induces myocardial protection in non-ischemic-preconditioned hearts. So far, little is known about the number of IPC cycles required for the release of cardioprotective factors into the coronary effluent to successfully induce cardioprotection. This study investigated the cardioprotective potency of effluent obtained after various IPC cycles in the rat heart. Experiments were performed on isolated hearts of male Wistar rats, mounted onto a Langendorff system and perfused with Krebs-Henseleit buffer. In a first part, effluent was taken before (Con) and after each IPC cycle (Eff 1, Eff 2, Eff 3). IPC was induced by 3 cycles of 5 min of global myocardial ischemia followed by 5 minutes of reperfusion. In a second part, hearts of male Wistar rats were randomized to four groups (each group n = 4–5) and underwent 33 min of global ischemia followed by 60 min of reperfusion. The previously obtained coronary effluent was administered for 10 minutes before ischemia as a preconditioning stimulus. Infarct size was determined at the end of reperfusion by triphenyltetrazoliumchloride (TTC) staining. Infarct size with control effluent was 54±12%. Effluent obtained after IPC confers a strong infarct size reduction independent of the number of IPC cycles (Eff 1: 27±5%; Eff 2: 35±7%; Eff 3: 35±8%, each P<0.05 vs. Con). Effluent extracted after one cycle IPC is comparably protective as after two or three cycles IPC.


2012 ◽  
Vol 303 (10) ◽  
pp. H1229-H1236 ◽  
Author(s):  
Gabriella F. Kocsis ◽  
Márta Sárközy ◽  
Péter Bencsik ◽  
Márton Pipicz ◽  
Zoltán V. Varga ◽  
...  

Metabolic diseases such as hyperlipidemia and diabetes attenuate the cardioprotective effect of ischemic preconditioning. In the present study, we examined whether another metabolic disease, prolonged uremia, affects ischemia/reperfusion injury and cardioprotection by ischemic preconditioning. Uremia was induced by partial nephrectomy in male Wistar rats. The development of uremia was verified 29 wk after surgery. Transthoracic echocardiography was performed to monitor cardiac function. At week 30, hearts of nephrectomized and sham-operated rats were isolated and subjected to a 30-min coronary occlusion followed by 120 min reperfusion with or without preceding preconditioning induced by three intermittent cycles of brief ischemia and reperfusion. In nephrectomized rats, plasma uric acid, carbamide, and creatinine as well as urine protein levels were increased as compared with sham-operated controls. Systolic anterior and septal wall thicknesses were increased in nephrectomized rats, suggesting the development of a minimal cardiac hypertrophy. Ejection fraction was decreased and isovolumic relaxation time was shortened in nephrectomized rats demonstrating a mild systolic and diastolic dysfunction. Infarct size was not affected significantly by nephrectomy itself. Ischemic preconditioning significantly decreased infarct size from 24.8 ± 5.2% to 6.6 ± 1.3% in the sham-operated group and also in the uremic group from 35.4 ± 9.5% to 11.9 ± 3.1% of the area at risk. Plasma ANG II and nitrotyrosine were significantly increased in the uremic rats. We conclude that although prolonged experimental uremia leads to severe metabolic changes and the development of a mild myocardial dysfunction, the cardioprotective effect of ischemic preconditioning is still preserved.


2019 ◽  
Vol 8 (3) ◽  
pp. 396 ◽  
Author(s):  
Sebastian Bunte ◽  
Tobias Lill ◽  
Maximilian Falk ◽  
Martin Stroethoff ◽  
Annika Raupach ◽  
...  

Anesthetics, especially propofol, are discussed to influence ischemic preconditioning. We investigated whether cardioprotection by milrinone or levosimendan is influenced by the clinically used anesthetics propofol, sevoflurane or dexmedetomidine. Hearts of male Wistar rats were randomised, placed on a Langendorff system and perfused with Krebs–Henseleit buffer (KHB) at a constant pressure of 80 mmHg. All hearts underwent 33 min of global ischemia and 60 min of reperfusion. Three different anesthetic regimens were conducted throughout the experiments: propofol (11 μM), sevoflurane (2.5 Vol%) and dexmedetomidine (1.5 nM). Under each anesthetic regimen, pharmacological preconditioning was induced by administration of milrinone (1 μM) or levosimendan (0.3 μM) 10 min before ischemia. Infarct size was determined by TTC staining. Infarct sizes in control groups were comparable (KHB-Con: 53 ± 9%, Prop-Con: 56 ± 9%, Sevo-Con: 56 ± 8%, Dex-Con: 53 ± 9%; ns). Propofol completely abolished preconditioning by milrinone and levosimendan (Prop-Mil: 52 ± 8%, Prop-Lev: 52 ± 8%; ns versus Prop-Con), while sevoflurane did not (Sevo-Mil: 31 ± 9%, Sevo-Lev: 33 ± 7%; p < 0.05 versus Sevo-Con). Under dexmedetomidine, results were inconsistent; levosimendan induced infarct size reduction (Dex-Lev: 36 ± 6%; p < 0.05 versus Dex-Con) but not milrinone (Dex-Mil: 51 ± 8%; ns versus Dex-Con). The choice of the anesthetic regimen has an impact on infarct size reduction by pharmacological preconditioning.


Author(s):  
Rizky Dzariyani Laili ◽  
Arie Dwi Alristina ◽  
Rossa Kurnia Ethasari ◽  
Dewinta Hayudanti

Introduction : The risk of atherosclerosis increases when elevated blood cholesterol levels. Flavonoids may help inhibit the absorption of fat, which indirectly helps in lower cholesterol levels.Flavonoids are widely available on the Andrographis paniculata leaves (APL).This study aims to examine the effect of flavonoids in APL stewto lower the cholesterol levels. Material and Methods: This research was carried out using five different groups of Wistarrats. Each group consists of five Wistar rats. Group (K-) received normal diet, group (K+) received atherogenic diet and three groups of atherogenic diets rats that pre-treated with three different doses (0.6, 1.2, and 2.4g/day) of APL leaf stew. APL stew is orally gavaged for 60 days. The cholesterol blood serum was analyzed using the CHOD-PAP method. Statistical analysis using One-Way ANOVA and Post-Hoc Tukey. Results : The results showed a significant difference in cholesterol levels between the groups of theatherogenic diet with other treatment groups (p = 0.000).When compared with thenormal diet group, treatment with 1.2 g and 2.4 g of APL produce cholesterol levels not significantly different.APLstew has been shown to inhibit the elevated levels of serum cholesterol in male Wistar rats that fed with the atherogenic diet which contributed 54.8%.While fat intake increased the cholesterol level by 16.3%.Both APL stew and fat dose intake together affect the formation of cholesterol with a contribution of 69.2%. Conclusion : The dose that is considered as the most effective in lowering cholesterol is 2.4 g becauseit producescholesterol level closest to normal.


2021 ◽  
Vol 99 (2) ◽  
pp. 218-223
Author(s):  
Mohamad Nusier ◽  
Mohammad Alqudah ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

This study examined the effects of ischemic preconditioning (IP) on the ischemia/reperfusion (I/R) induced injury in normal and hypertrophied hearts. Cardiac hypertrophy in rabbits was induced by L-thyroxine (0.5 mg/kg/day for 16 days). Hearts with or without IP (3 cycles of 5 min ischemia and 10 min reperfusion) were subjected to I/R (60 min ischemia followed by 60 min reperfusion). IP reduced the I/R-induced infarct size from 68% to 24% and 57% to 33% in the normal and hypertrophied hearts, respectively. Leakage of creatine phosphokinase in the perfusate from the hypertrophied hearts due to I/R was markedly less than that form the normal hearts; IP prevented these changes. Although IP augmented the increase in phosphorylated p38-mitogen-activated protein kinase (p38-MAPK) content due to I/R, this effect was less in the hypertrophied than in the normal heart. These results suggest that reduced cardioprotection by IP of the I/R-induced injury in hypertrophied hearts may be due to reduced activation of p38-MAPK in comparison with normal hearts.


2000 ◽  
Vol 278 (1) ◽  
pp. H305-H312 ◽  
Author(s):  
Ryan M. Fryer ◽  
Janis T. Eells ◽  
Anna K. Hsu ◽  
Michele M. Henry ◽  
Garrett J. Gross

We examined the role of the sarcolemmal and mitochondrial KATPchannels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 ± 1%) versus control (56 ± 1%). The sarcolemmal KATP channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial KATP channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 ± 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 ± 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 ± 0.30 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 ± 0.06 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. IPC significantly increased ATP synthesis to 1.86 ± 0.23 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 ± 0.15 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1). These data are consistent with the notion that inhibition of mitochondrial KATPchannels attenuates IPC by reducing IPC-induced protection of mitochondrial function.


2004 ◽  
Vol 287 (4) ◽  
pp. H1786-H1791 ◽  
Author(s):  
Shinji Okubo ◽  
Yujirou Tanabe ◽  
Kenji Takeda ◽  
Michihiko Kitayama ◽  
Seiyu Kanemitsu ◽  
...  

We examined whether ischemic preconditioning (IPC) attenuates ischemia-reperfusion injury, in part, by decreasing apoptosis and whether the δ-opioid receptor (DOR) plays a pivotal role in the regulation of apoptosis. Rabbits were subjected to 30-min coronary artery occlusion (CAO) and 180 min of reperfusion. IPC was elicited with four cycles of 5-min ischemia and 10-min reperfusion before CAO. Morphine (0.3 mg/kg iv) was given 15 min before CAO. Naloxone (Nal; 10 mg/kg iv) and naltrindole (Nti; 10 mg/kg iv), the respective nonselective and selective DOR antagonists were given 10 min before either morphine or IPC. Infarct size (%risk area) was reduced from 46 ± 3.8 in control to 11.6 ± 1.0 in IPC and 19.5 ± 3.8 in the morphine group (means ± SE; P < 0.001 vs. control). Nal blocked the protective effects of IPC and morphine, as shown by the increase in infarct size to 38.6 ± 7.2 and 44.5 ± 1.8, respectively. Similarly, Nti blocked IPC and morphine-induced protection. The percentage of apoptotic cells (revealed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) decreased in IPC (3.6 ± 1.9) and morphine groups (5.2 ± 1.2) compared with control group (12.4 ± 1.6; P < 0.001). Nti pretreatment increased apoptotic cells 11.2 ± 2.2% in IPC and 12.1 ± 0.8% in morphine groups. Nal failed to block inhibition of apoptosis in the IPC group (% of cells: 5.7 ± 1.3 vs. 3.6 ± 1.9 in IPC alone; P > 0.05). These results were also confirmed by nucleosomal DNA laddering pattern. We conclude that IPC reduces lethal injury, in part, by decreasing apoptosis after ischemia-reperfusion and activation of the DOR may play a crucial role in IPC or morphine-induced myocardial protection.


2018 ◽  
Vol 132 (15) ◽  
pp. 1669-1683 ◽  
Author(s):  
Chayodom Maneechote ◽  
Siripong Palee ◽  
Sasiwan Kerdphoo ◽  
Thidarat Jaiwongkam ◽  
Siriporn C. Chattipakorn ◽  
...  

Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.


Sign in / Sign up

Export Citation Format

Share Document