scholarly journals AcoMYB4, an Ananas comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling

2020 ◽  
Vol 21 (16) ◽  
pp. 5727
Author(s):  
Huihuang Chen ◽  
Linyi Lai ◽  
Lanxin Li ◽  
Liping Liu ◽  
Bello Hassan Jakada ◽  
...  

Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.

2020 ◽  
Author(s):  
Kaihui Zhai ◽  
Guangwu Zhao ◽  
Hongye Jiang ◽  
Caixia Sun ◽  
Jingyu Ren

Abstract Background MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. In our previous work, a new MYB transcription factor gene, ZmMYB59 was induced by deep sowing and down-regulated during maize seed germination via Real-Time PCR. However, there are few reports on seed germination regulated by MYB proteins and the functions of ZmMYB59 remain unknown. Results In this study, to examine its functions, Agrobacterium -mediated transformation was exploited to generate ZmMYB59 transgenic tobacco and rice. In T 2 generation transgenic tobacco, germination rate, germination index, vigor index and hypocotyl length were significantly decreased by 25.0~50.9%, 34.5~54.4%, 57.5~88.3% and 21.9~31.2% compared to wild-type (WT) lines. In T 2 generation transgenic rice, germination rate, germination index, vigor index and mesocotyl length were notably reduced by 39.1~53.8%, 51.4~71.4%, 52.5~74.0% and 28.3~41.5%, respectively. On this basis, relative physiological indicators were determined. The activities of catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and proline content of transgenic lines were significantly lower than those of WT, suggesting that ZmMYB59 reduced their antioxidant capacity. As well, ZmMYB59 expression extremely inhibited the synthesis of gibberellin A1 (GA 1 ) and cytokinin (CTK), and promoted the synthesis of abscisic acid (ABA) concurrently, which implied that seed germination was repressed by ZmMYB59 in hormone levels. Furthermore, cell length and cell number of hypocotyl/mesocotyl in transgenic plants were notably decreased. Conclusions Taken together, it proposed that ZmMYB59 plays a negative regulation during seed germination in tobacco and rice, which also contributes to illuminate the molecular mechanisms regulated by MYB transcription factors.


2020 ◽  
Author(s):  
Kaihui Zhai ◽  
Guangwu Zhao ◽  
Hongye Jiang ◽  
Caixia Sun ◽  
Jingyu Ren

Abstract Background: MYB transcription factors are involved in many biological processes, including metabolism, development and responses to biotic and abiotic stresses. In our previous work, a new MYB transcription factor gene, ZmMYB59 was induced by deep sowing and down-regulated during maize seed germination via Real-Time PCR. However, there are few reports on seed germination regulated by MYB proteins and the functions of ZmMYB59 remain unknown.Results: In this study, to examine its functions, Agrobacterium-mediated transformation was exploited to generate ZmMYB59 transgenic tobacco and rice. In T2 generation transgenic tobacco, germination rate, germination index, vigor index and hypocotyl length were significantly decreased by 25.0~50.9%, 34.5~54.4%, 57.5~88.3% and 21.9~31.3% compared to wild-type (WT) lines. In T2 generation transgenic rice, germination rate, germination index, vigor index and mesocotyl length were notably reduced by 39.1~53.8%, 51.4~71.4%, 52.5~74.0% and 28.3~41.5%, respectively. On this basis, relative physiological indicators were determined. The activities of catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and proline content of transgenic lines were significantly lower than those of WT, suggesting that ZmMYB59 reduced their antioxidant capacity. As well, ZmMYB59 expression extremely inhibited the synthesis of gibberellin A1 (GA1) and cytokinin (CTK), and promoted the synthesis of abscisic acid (ABA) concurrently, which implied that seed germination was repressed by ZmMYB59 in hormone levels. Furthermore, cell length and cell number of hypocotyl/mesocotyl in transgenic tobacco and rice were notably decreased. Conclusions: Taken together, it proposed that ZmMYB59 plays a negative regulatory role during seed germination in tobacco and rice, which also contributes to illuminate the molecular mechanisms regulated by MYB transcription factors.


2019 ◽  
Vol 20 (3) ◽  
pp. 788 ◽  
Author(s):  
Tingting Jia ◽  
Jian Wang ◽  
Wei Chang ◽  
Xiaoxu Fan ◽  
Xin Sui ◽  
...  

To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.


Author(s):  
Eleonora Cominelli ◽  
Giuliana Gusmaroli ◽  
Lucio Conti ◽  
Domenico Allegra ◽  
Katia Petroni ◽  
...  

2021 ◽  
Author(s):  
Jingyi Li ◽  
Shaoqun Liu ◽  
Peifen Chen ◽  
Jiarong Cai ◽  
Song Tang ◽  
...  

Tea from Camellia sinensis is one of the most popular beverages worldwide, lauded for its charming flavors and health-promoting properties. C. sinensis produces an abundance of specialized metabolites, which makes it an excellent model for digging into the genetic regulation of plant-specific metabolite biosynthesis. The most abundant health-promoting metabolites in tea are galloylated catechins, and the most bioactive of the galloylated catechins, epigallocatechin gallate (EGCG), is exclusively found in C. sinensis. The R2R3-MYB transcription factor family regulates metabolism of phenylpropanoids, the precursors to catechins, in various plant lineages. However, the transcriptional regulation of galloylated catechin biosynthesis remains elusive. Species-expanded or specific MYB transcription factors may regulate species-specific metabolite biosynthesis. This study mined the R2R3-MYB transcription factors associated with galloylated catechin biosynthesis in C. sinensis. A total of 118 R2R3-MYB proteins, classified into 38 subgroups, were identified. R2R3-MYB subgroups specific to or expanded in C. sinensis were hypothesized to be essential to evolutionary diversification of tea-specific metabolites. Notably, nine of these R2R3-MYB genes were expressed preferentially in apical buds and young leaves, exactly where galloylated catechins accumulate. Three putative R2R3-MYB genes displayed strong correlation with key galloylated catechin biosynthesis genes, suggesting a role in regulating biosynthesis of epicatechin gallate (ECG) and EGCG. Overall, this study paves the way to reveal the transcriptional regulation of galloylated catechins in C. sinensis.


2022 ◽  
Vol 23 (2) ◽  
pp. 756
Author(s):  
Chengjie Xu ◽  
Mingzhao Luo ◽  
Xianjun Sun ◽  
Jiji Yan ◽  
Huawei Shi ◽  
...  

Salt stress is a major threat to crop quality and yield. Most experiments on salt stress-related genes have been conducted at the laboratory or greenhouse scale. Consequently, there is a lack of research demonstrating the merit of exploring these genes in field crops. Here, we found that the R2R3-MYB transcription factor SiMYB19 from foxtail millet is expressed mainly in the roots and is induced by various abiotic stressors such as salt, drought, low nitrogen, and abscisic acid. SiMYB19 is tentatively localized to the nucleus and activates transcription. It enhances salt tolerance in transgenic rice at the germination and seedling stages. SiMYB19 overexpression increased shoot height, grain yield, and salt tolerance in field- and salt pond-grown transgenic rice. SiMYB19 overexpression promotes abscisic acid (ABA) accumulation in transgenic rice and upregulates the ABA synthesis gene OsNCED3 and the ABA signal transduction pathway-related genes OsPK1 and OsABF2. Thus, SiMYB19 improves salt tolerance in transgenic rice by regulating ABA synthesis and signal transduction. Using rice heterologous expression analysis, the present study introduced a novel candidate gene for improving salt tolerance and increasing yield in crops grown in saline-alkali soil.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


Sign in / Sign up

Export Citation Format

Share Document