scholarly journals Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem (iPS) Cells Suppress or Activate T Cells via Costimulatory Signals

2020 ◽  
Vol 21 (18) ◽  
pp. 6507
Author(s):  
Sunao Sugita ◽  
Yoko Futatsugi ◽  
Masaaki Ishida ◽  
Ayaka Edo ◽  
Masayo Takahashi

Human retinal pigment epithelial (RPE) cells derived from induced pluripotent stem (iPS) cells have immunosuppressive properties. However, RPE cells are also known as immunogenic cells, and they have major histocompatibility complex expression and produce inflammatory proteins, and thus experience immune rejection after transplantation. In this study, to confirm the immunological properties of IPS-RPE cells, we examined whether human RPE cells derived from iPS cells could suppress or stimulate inflammatory T cells from uveitis patients via costimulatory signals. We established T cells from patients with active uveitis as target cells and used iPS-RPE cells as effector cells. As a result, cultured iPS-RPE cells inhibited cell proliferation and the production of IFN-γ by activated uveitis CD4+ T cells, especially Th1-type T cells. In contrast, iPS-RPE cells stimulated T cells of uveitis patients. The iPS-RPE cells constitutively expressed B7-H1/CD274 and B7-DC/CD273, and suppressed the activation of T cells via the PD-1 receptor. iPS-RPE expressed these negative costimulatory molecules, especially when RPE cells were pretreated with recombinant IFN-γ. In addition, iPS-RPE cells also expressed B7-H3/CD276 costimulatory molecules and activated uveitis T cells through the B7-H3-TLT-2 receptor. Thus, cultured iPS-derived retinal cells can suppress or activate inflammatory T cells in vitro through costimulatory interactions.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Ye ◽  
Ting Yu ◽  
Yanqun Li ◽  
Bingni Chen ◽  
Jinshun Zhang ◽  
...  

To gain further insights into the molecular basis of Sulforaphane (SF) mediated retinal pigment epithelial (RPE) 19 cell against oxidative stress, we investigated the effects of SF on the regulation of gene expression on a global scale and tested whether SF can endow RPE cells with the ability to resist apoptosis. The data revealed that after exposure to H2O2, RPE 19 cell viability was increased in the cells pretreated with SF compared to the cell not treated with SF. Microarray analysis revealed significant changes in the expression of 69 genes in RPE 19 cells after 6 hours of SF treatment. Based on the functional relevance, eight of the SF-responsive genes, that belong to antioxidant redox system, and inflammatory responsive factors were validated. The up-regulating translation of thioredoxin-1 (Trx1) and the nuclear translocation of Nuclear factor-like2 (Nrf2) were demonstrated by immunoblot analysis in SF treated RPE cells. Our data indicate that SF increases the ability of RPE 19 cell against oxidative stress through up-regulating antioxidative enzymes and down-regulating inflammatory mediators and chemokines. The results suggest that the antioxidant, SF, may be a valuable supplement for preventing and retarding the development of Age Related Macular Degeneration.


2019 ◽  
Vol 316 (6) ◽  
pp. C782-C791 ◽  
Author(s):  
Zhi-Peng You ◽  
Shan-Shan Chen ◽  
Zhong-Yi Yang ◽  
Shu-Rong Li ◽  
Fan Xiong ◽  
...  

Cell permeability and epithelial-mesenchymal transition (EMT) were found to be enhanced in diabetic retinopathy, and the aim of this study was to investigate the underlying mechanism. ARPE-19 cell line or primary retinal pigment epithelial (RPE) cells were cultured under high or normal glucose conditions. Specific shRNAs were employed to knock down ADP-ribosylation factor 6 (ARF6), GEP100, or VEGF receptor 2 (VEGFR2) in ARPE-19 or primary RPE cells. Cell migration ability was measured using Transwell assay. Western blotting was used to measure indicated protein levels. RPE cells treated with high glucose showed increased cell migration, paracellular permeability, EMT, and expression of VEGF. Knockdown of VEGFR2 inhibited the high-glucose-induced effects on RPE cells via inactivation of ARF6 and MAPK pathways. Knockdown ARF6 or GEP100 led to inhibition of high-glucose-induced effects via inactivation of VEGFR2 pathway. Knockdown of ARF6, but not GEP100, decreased high-glucose-induced internalization of VEGFR2. High-glucose enhances EMT and cell permeability of RPE cells through activation of VEGFR2 and ARF6/GEP100 pathways, which form a positive feedback loop to maximize the activation of VEGF/VEGFR2 signaling.


Planta Medica ◽  
2018 ◽  
Vol 84 (14) ◽  
pp. 1030-1037 ◽  
Author(s):  
Wayne Liu ◽  
Shorong-Shii Liou ◽  
Tang-Yao Hong ◽  
I-Min Liu

AbstractThe present study aimed to determine whether hesperidin, a plant-based active flavanone found in citrus fruits, can prevent high glucose-induced retinal pigment epithelial (RPE) cell impairment. Cultured human RPE cells (ARPE-19) were exposed to a normal glucose concentration (5.5 mM) for 4 d and then soaked in either normal (5.5 mM) or high (33.3 mM) concentrations of D-glucose with or without different concentrations of hesperidin (10, 20, or 40 µM) for another 48 h. The survival rates of the cells were measured using a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction assay. With the help of a fluorescent probe, the intracellular production of reactive oxygen species (ROS) was evaluated. Colorimetric assay kits were used to assess the antioxidant enzyme activities, and western blotting was used to measure the expression of apoptosis-related protein. Hesperidin was effective in inhibiting high glucose-induced ROS production, preventing loss of cell viability, and promoting the endogenous antioxidant defense components, including glutathione peroxidase, superoxide dismutase, catalase, and glutathione, in a concentration-dependent manner. Furthermore, high glucose triggered cell apoptosis via the upregulation of caspase-9/3, enhancement of cytochrome c release into the cytosol, and subsequent interruption of the Bax/Bcl-2 balance. These detrimental effects were ameliorated by hesperidin in a concentration-dependent manner. We conclude that through the scavenging of ROS and modulation of the mitochondria-mediated apoptotic pathway, hesperidin may protect RPE cells from high glucose-induced injury and thus may be a candidate in preventing the visual impairment caused by diabetic retinopathy.


2000 ◽  
Vol 17 (2) ◽  
pp. 157-164 ◽  
Author(s):  
RUN-TAO YAN ◽  
SHU-ZHEN WANG

Embryonic chick retinal pigment epithelial (RPE) cells can undergo transdifferentiation upon appropriate stimulation. For example, basic fibroblast growth factor (bFGF) induces intact RPE tissue younger than embryonic day 4.5 (E4.5) to transdifferentiate into a neural retina. NeuroD, a gene encoding a basic helix-loop–helix transcription factor, triggers de novo production of cells that resemble young photoreceptor cells morphologically and express general neuron markers (HNK-1/N-CAM and MAP2) and a photoreceptor-specific marker (visinin) from cell cultures of dissociated E6 RPE (Yan & Wang, 1998). The present study examined whether bFGF will lead to the same transdifferentiation phenomenon as neuroD when applied to dissociated, cultured E6 RPE cells, and whether interplay exists between the two factors under the culture conditions. Dissociated E6 RPE cells were cultured in the presence or absence of bFGF, and with or without the addition of retrovirus expressing neuroD. Gene expression was analyzed with immunocytochemistry and in situ hybridization. Unlike neuroD, bFGF did not induce the expression of visinin, or HNK-1/N-CAM and MAP2. However, bFGF elicited the expression of RA4 immunogenicity; yet, many of these RA4-positive cells lacked a neuronal morphology. Addition of bFGF to neuroD-expressing cultures did not alter the number of visinin-expressing cells; misexpression of neuroD in bFGF-treated cultures did not change the number of RA4-positive cells, suggesting the absence of interference or synergistic interaction between the two factors. Our data indicated that bFGF and neuroD induced the expression of different genes in cultured RPE cells.


Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Naphtali Savion ◽  
Samia Dahamshi ◽  
Milana Morein ◽  
Shlomo Kotev-Emeth

The capacity of S-Allylmercapto-N-acetylcysteine (ASSNAC) to protect human retinal pigment epithelial (RPE) cells (line ARPE-19) and porcine lenses from oxidative stress was studied. Confluent ARPE-19 cultures were incubated with ASSNAC or N-acetyl-cysteine (NAC) followed by exposure to oxidants and glutathione level and cell survival were determined. Porcine lenses were incubated with ASSNAC and then exposed to H2O2 followed by lens opacity measurement and determination of glutathione (reduced (GSH) and oxidized (GSSG)) in isolated lens adhering epithelial cells (lens capsule) and fiber cells consisting the lens cortex and nucleus (lens core). In ARPE-19 cultures, ASSNAC (0.2 mM; 24 h) increased glutathione level by 2–2.5-fold with significantly higher increase in GSH compared to NAC treated cultures. Similarly, ex-vivo exposure of lenses to ASSNAC (1 mM) significantly reduced the GSSG level and prevented H2O2 (0.5 mM)-induced lens opacification. These results demonstrate that ASSNAC up-regulates glutathione level in RPE cells and protects them from oxidative stress-induced cell death as well as protects lenses from oxidative stress-induced opacity. Further validation of these results in animal models may suggest a potential use for ASSNAC as a protective therapy in retinal degenerative diseases as well as in attenuation of oxidative stress-induced lens opacity.


1999 ◽  
Vol 16 (4) ◽  
pp. 619-628 ◽  
Author(s):  
ALISON M. HARMAN ◽  
ROBERT HOSKINS ◽  
LYN D. BEAZLEY

Form deprivation has been shown to result in myopia in a number of species such that the eye enlarges if one eye is permanently closed at the time of eye opening. In the quokka wallaby, the eye grows slowly throughout life. After form deprivation, the eye enlarges by 1–1.5 years of age to the size of that in a 4–6-year-old animal and the number of multinucleated retinal pigment epithelial (RPE) cells in the enlarged retina remains much lower than would be expected in eyes of comparable size. Here we have repeated the experiment but examined animals at 4 years of age. The sutured eye grew significantly larger than did its partner. Numbers of RPE cells were comparable between sutured and partner eyes but were lower than in normal animals of similar age. Reductions in RPE cell density were greater in nasal than in dorsal or ventral retina and were not seen in temporal retina. The distribution of multinucleated cells was quite different in the sutured and open eyes. As in normal eyes, partner eyes had most multinucleated cells in ventral retina, while in the sutured eyes such cells were located mainly in the far periphery. In conclusion, the RPE is significantly changed by the eye enlargement process. However, it is not known whether this change results from an active part played by the RPE in the retinal expansion process or whether the changes are simply a result of a passive increase in area of the RPE.


Sign in / Sign up

Export Citation Format

Share Document