scholarly journals Pleiotropic Effects of Exosomes as a Therapy for Stroke Recovery

2020 ◽  
Vol 21 (18) ◽  
pp. 6894
Author(s):  
Yuji Ueno ◽  
Kenichiro Hira ◽  
Nobukazu Miyamoto ◽  
Chikage Kijima ◽  
Toshiki Inaba ◽  
...  

Stroke is the leading cause of disability, and stroke survivors suffer from long-term sequelae even after receiving recombinant tissue plasminogen activator therapy and endovascular intracranial thrombectomy. Increasing evidence suggests that exosomes, nano-sized extracellular membrane vesicles, enhance neurogenesis, angiogenesis, and axonal outgrowth, all the while suppressing inflammatory reactions, thereby enhancing functional recovery after stroke. A systematic literature review to study the association of stroke recovery with exosome therapy was carried out, analyzing species, stroke model, source of exosomes, behavioral analyses, and outcome data, as well as molecular mechanisms. Thirteen studies were included in the present systematic review. In the majority of studies, exosomes derived from mesenchymal stromal cells or stem cells were administered intravenously within 24 h after transient middle cerebral artery occlusion, showing a significant improvement of neurological severity and motor functions. Specific microRNAs and molecules were identified by mechanistic investigations, and their amplification was shown to further enhance therapeutic effects, including neurogenesis, angiogenesis, axonal outgrowth, and synaptogenesis. Overall, this review addresses the current advances in exosome therapy for stroke recovery in preclinical studies, which can hopefully be preparatory steps for the future development of clinical trials involving stroke survivors to improve functional outcomes.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lanqing Meng ◽  
Qing Huang ◽  
Xuebin Li ◽  
Ping Liang ◽  
Yueyong Li ◽  
...  

Stroke is a cerebrovascular disease that results in decreased blood flow. Although Panax notoginseng (PN), a Chinese herbal medicine, has been proven to promote stroke recovery, its molecular mechanism remains unclear. In this study, middle cerebral artery occlusion (MCAO) was induced in rats with thrombi generated by thread and subsequently treated with PN. After that, staining with 2,3,5-triphenyltetrazolium chloride was employed to evaluate the infarcted area, and electron microscopy was used to assess ultrastructural changes of the neurovascular unit. RNA-Seq was performed to determine the differential expressed genes (DEGs) which were then verified by qPCR. In total, 817 DEGs were identified to be related to the therapeutic effect of PN on stroke recovery. Further analysis by Gene Oncology analysis and Kyoto Encyclopedia of Genes and Genomes revealed that most of these genes were involved in the biological function of nerves and blood vessels through the regulation of neuroactive live receptor interactions of PI3K-Akt, Rap1, cAMP, and cGMP-PKG signaling, which included in the 18 pathways identified in our research, of which, 9 were reported firstly that related to PN’s neuroprotective effect. This research sheds light on the potential molecular mechanisms underlying the effects of PN on stroke recovery.


2021 ◽  
Author(s):  
Yuanyuan Ji ◽  
Dennis Koch ◽  
Jule González Delgado ◽  
Madlen Günther ◽  
Otto W. Witte ◽  
...  

AbstractIschemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in post-stroke dendritic arbor repair in peri-infarct areas. In Cobl KO mice, the dendritic repair window determined to span day 2-4 post-stroke in WT strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful post-stroke recovery process and identified causal molecular mechanisms critical during post-stroke repair.


2020 ◽  
Vol 28 (2) ◽  
pp. 360-376 ◽  
Author(s):  
Atefeh Amiri ◽  
Maryam Mahjoubin-Tehran ◽  
Zatollah Asemi ◽  
Alimohammad Shafiee ◽  
Sarah Hajighadimi ◽  
...  

: Cancer and inflammatory disorders are two important public health issues worldwide with significant socio.economic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuefei Jin ◽  
Wangquan Ji ◽  
Haiyan Yang ◽  
Shuaiyin Chen ◽  
Weiguo Zhang ◽  
...  

AbstractOn 12 March 2020, the outbreak of coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization. As of 4 August 2020, more than 18 million confirmed infections had been reported globally. Most patients have mild symptoms, but some patients develop respiratory failure which is the leading cause of death among COVID-19 patients. Endothelial cells with high levels of angiotensin-converting enzyme 2 expression are major participants and regulators of inflammatory reactions and coagulation. Accumulating evidence suggests that endothelial activation and dysfunction participate in COVID-19 pathogenesis by altering the integrity of vessel barrier, promoting pro-coagulative state, inducing endothelial inflammation, and even mediating leukocyte infiltration. This review describes the proposed cellular and molecular mechanisms of endothelial activation and dysfunction during COVID-19 emphasizing the principal mediators and therapeutic implications.


2021 ◽  
pp. jnnp-2020-325328
Author(s):  
Sergio Nappini ◽  
Francesco Arba ◽  
Giovanni Pracucci ◽  
Valentina Saia ◽  
Danilo Caimano ◽  
...  

BackgroundWe evaluated safety and efficacy of intravenous recombinant tissue Plasminogen Activator plus endovascular (bridging) therapy compared with direct endovascular therapy in patients with ischaemic stroke due to basilar artery occlusion (BAO).MethodsFrom a national prospective registry of endovascular therapy in acute ischaemic stroke, we selected patients with BAO. We compared bridging and direct endovascular therapy evaluating vessel recanalisation, haemorrhagic transformation at 24–36 hours; procedural complications; and functional outcome at 3 months according to the modified Rankin Scale. We ran logistic and ordinal regression models adjusting for age, sex, National Institutes of Health Stroke Scale (NIHSS), onset-to-groin-puncture time.ResultsWe included 464 patients, mean(±SD) age 67.7 (±13.3) years, 279 (63%) males, median (IQR) NIHSS=18 (10–30); 166 (35%) received bridging and 298 (65%) direct endovascular therapy. Recanalisation rates and symptomatic intracerebral haemorrhage were similar in both groups (83% and 3%, respectively), whereas distal embolisation was more frequent in patients treated with direct endovascular therapy (9% vs 3%; p=0.009). In the whole population, there was no difference between bridging and direct endovascular therapy regarding functional outcome at 3 months (OR=0.79; 95% CI=0.55 to 1.13). However, in patients with onset-to-groin-puncture time ≤6 hours, bridging therapy was associated with lower mortality (OR=0.53; 95% CI=0.30 to 0.97) and a shift towards better functional outcome in ordinal analysis (OR=0.65; 95% CI=0.42 to 0.98).ConclusionsIn ischaemic stroke due to BAO, when endovascular therapy is initiated within 6 hours from symptoms onset, bridging therapy resulted in lower mortality and better functional outcome compared with direct endovascular therapy.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Fan Xia ◽  
Yonju Ha ◽  
Shuizhen Shi ◽  
Yi Li ◽  
Shengguo Li ◽  
...  

AbstractThe retina, as the only visually accessible tissue in the central nervous system, has attracted significant attention for evaluating it as a biomarker for neurodegenerative diseases. Yet, most of studies focus on characterizing the loss of retinal ganglion cells (RGCs) and degeneration of their axons. There is no integrated analysis addressing temporal alterations of different retinal cells in the neurovascular unit (NVU) in particular retinal vessels. Here we assessed NVU changes in two mouse models of tauopathy, P301S and P301L transgenic mice overexpressing the human tau mutated gene, and evaluated the therapeutic effects of a tau oligomer monoclonal antibody (TOMA). We found that retinal edema and breakdown of blood–retina barrier were observed at the very early stage of tauopathy. Leukocyte adhesion/infiltration, and microglial recruitment/activation were constantly increased in the retinal ganglion cell layer of tau transgenic mice at different ages, while Müller cell gliosis was only detected in relatively older tau mice. Concomitantly, the number and function of RGCs progressively decreased during aging although they were not considerably altered in the very early stage of tauopathy. Moreover, intrinsically photosensitive RGCs appeared more sensitive to tauopathy. Remarkably, TOMA treatment in young tau transgenic mice significantly attenuated vascular leakage, inflammation and RGC loss. Our data provide compelling evidence that abnormal tau accumulation can lead to pathology in the retinal NVU, and vascular alterations occur more manifest and earlier than neurodegeneration in the retina. Oligomeric tau-targeted immunotherapy has the potential to treat tau-induced retinopathies. These data suggest that retinal NVU may serve as a potential biomarker for diagnosis and staging of tauopathy as well as a platform to study the molecular mechanisms of neurodegeneration.


2021 ◽  
Vol 46 (2) ◽  
pp. 207-218
Author(s):  
Hidenori Umetsu ◽  
Shojiro Watanabe ◽  
Tadaatsu Imaizumi ◽  
Tomomi Aizawa ◽  
Koji Tsugawa ◽  
...  

<b><i>Background:</i></b> Although toll-like receptor 3 (TLR3) signaling is involved in the development of certain chronic kidney diseases, the specific molecular mechanisms underlying inflammatory reactions via activation of TLR3 signaling in human podocytes remain unclear. Interleukin (IL)-6 is a pleiotropic cytokine associated with innate and adaptive immune responses; however, little is known about the implication of IL-6 via the activation of regional TLR3 signaling in the inflammatory reactions in human podocytes. <b><i>Methods:</i></b> We treated immortalized human podocytes with polyinosinic-polycytidylic acid (poly IC), an authentic viral double-stranded RNA, and assessed the expression of IL-6, monocyte chemoattractant protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against IFN-β and IL-6. <b><i>Results:</i></b> We found that the activation of TLR3 induced expression of IL-6, MCP-1, CCL5, and IFN-β in human podocytes. RNA interference experiments revealed that IFN-β was involved in the poly IC-induced expression of IL-6, MCP-1, and CCL5. Interestingly, IL-6 knockdown markedly increased the poly IC-induced expression of MCP-1 and CCL5. Further, treatment of cells with IL-6 attenuated the expression of CCL5 and MCP-1 mRNA and proteins. <b><i>Conclusion:</i></b> IL-6 induced by TLR3 signaling negatively regulates the expression of representative TLR3 signaling-dependent proinflammatory chemokines in human podocytes.


2019 ◽  
Vol 11 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Nobue Kitanaka ◽  
Frank Scott Hall ◽  
George Richard Uhl ◽  
Junichi Kitanaka

Background:The effectiveness of lithium salts in neuropsychiatric disorders such as bipolar disorder, Alzheimer’s disease, and treatment-resistant depression has been documented in an extensive scientific literature. Lithium inhibits inositol monophosphatase, inositol polyphosphate 1- phosphatase, and glycogen synthase kinase-3 and decreases expression level of tryptophan hydroxylase 2, conceivably underlying the mood stabilizing effects of lithium, as well as procognitive and neuroprotective effects. However, the exact molecular mechanisms of action of lithium on mood stabilizing and pro-cognitive effects in humans are still largely unknown.Objective:On the basis of the known aspects of lithium pharmacology, this review will discuss the possible mechanisms underlying the therapeutic effects of lithium on positive symptoms of methamphetamine abuse and dependence.Conclusion:It is possible that lithium treatment reduces the amount of newly synthesized phosphatidylinositol, potentially preventing or reversing neuroadaptations contributing to behavioral sensitization induced by methamphetamine. In addition, it is suggested that exposure to repeated doses of methamphetamine induces hyperactivation of glycogen synthase kinase-3β in the nucleus accumbens and in dorsal hippocampus, resulting in a long-term alterations in synaptic plasticity underlying behavioral sensitization as well as other behavioral deficits in memory-related behavior. Therefore it is clear that glycogen synthase kinase-3β inhibitors can be considered as a potential candidate for the treatment of methamphetamine abuse and dependence.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


2015 ◽  
Vol 35 (6) ◽  
pp. 2349-2359 ◽  
Author(s):  
Youli Xi ◽  
Miaozong Wu ◽  
Hongxia Li ◽  
Siqi Dong ◽  
Erfei Luo ◽  
...  

Background/Aims: Obesity-associated fatty liver disease affects millions of individuals. This study aimed to evaluate the therapeutic effects of baicalin to treat obesity and fatty liver in high fat diet-induced obese mice, and to study the potential molecular mechanisms. Methods: High fat diet-induced obese animals were treated with different doses of baicalin (100, 200 and 400 mg/kg/d). Whole body, fat pad and liver were weighed. Hyperlipidemia, liver steatosis, liver function, and hepatic Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ) / AMP-activated protein kinase (AMPK) / acetyl-CoA carboxylase (ACC) were further evaluated. Results: Baicalin significantly decreased liver, epididymal fat and body weights in high fat diet-fed mice, which were associated with decreased serum levels of triglycerides, total cholesterol, LDL, alanine transaminase and aspartate transaminase, but increased serum HDL level. Pathological analysis revealed baicalin dose-dependently decreased the degree of hepatic steatosis, with predominantly diminished macrovesicular steatosis at lower dose but both macrovesicular and microvesicular steatoses at higher dose of baicalin. Baicalin dose-dependently inhibited hepatic CaMKKβ/AMPK/ACC pathway. Conclusion: These data suggest that baicalin up to 400 mg/kg/d is safe and able to decrease the degree of obesity and fatty liver diseases. Hepatic CaMKKβ/AMPK/ACC pathway may mediate the therapeutic effects of baicalin in high fat diet animal model.


Sign in / Sign up

Export Citation Format

Share Document