scholarly journals Omics Analysis of Blood-Responsive Regulon in Bordetella pertussis Identifies a Novel Essential T3SS Substrate

2021 ◽  
Vol 22 (2) ◽  
pp. 736
Author(s):  
Jakub Drzmisek ◽  
Daniel Stipl ◽  
Denisa Petrackova ◽  
Branislav Vecerek ◽  
Ana Dienstbier

Bacterial pathogens sense specific cues associated with different host niches and integrate these signals to appropriately adjust the global gene expression. Bordetella pertussis is a Gram-negative, strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Though B. pertussis does not cause invasive infections, previous results indicated that this reemerging pathogen responds to blood exposure. Here, omics RNA-seq and LC–MS/MS techniques were applied to determine the blood-responsive regulon of B. pertussis. These analyses revealed that direct contact with blood rewired global gene expression profiles in B. pertussis as the expression of almost 20% of all genes was significantly modulated. However, upon loss of contact with blood, the majority of blood-specific effects vanished, with the exception of several genes encoding the T3SS-secreted substrates. For the first time, the T3SS regulator BtrA was identified in culture supernatants of B. pertussis. Furthermore, proteomic analysis identified BP2259 protein as a novel secreted T3SS substrate, which is required for T3SS functionality. Collectively, presented data indicate that contact with blood represents an important cue for B. pertussis cells.

2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


2005 ◽  
Vol 187 (9) ◽  
pp. 3259-3266 ◽  
Author(s):  
Anyou Wang ◽  
David E. Crowley

ABSTRACT Genome-wide analysis of temporal gene expression profiles in Escherichia coli following exposure to cadmium revealed a shift to anaerobic metabolism and induction of several stress response systems. Disruption in the transcription of genes encoding ribosomal proteins and zinc-binding proteins may partially explain the molecular mechanisms of cadmium toxicity.


2008 ◽  
Vol 3 ◽  
pp. BMI.S590 ◽  
Author(s):  
Han-Jin Park ◽  
Jung Hwa Oh ◽  
Seokjoo Yoon ◽  
S.V.S. Rana

Benzene is used as a general purpose solvent. Benzene metabolism starts from phenol and ends with p-benzoquinone and o-benzoquinone. Liver injury inducted by benzene still remains a toxicologic problem. Tumor related genes and immune responsive genes have been studied in patients suffering from benzene exposure. However, gene expression profiles and pathways related to its hepatotoxicity are not known. This study reports the results obtained in the liver of BALB/C mice (SLC, Inc., Japan) administered 0.05 ml/100 g body weight of 2% benzene for six days. Serum, ALT, AST and ALP were determined using automated analyzer (Fuji., Japan). Histopathological observations were made to support gene expression data. c-DNA microarray analyses were performed using Affymetrix Gene-chip system. After six days of benzene exposure, twenty five genes were down regulated whereas nineteen genes were up-regulated. These gene expression changes were found to be related to pathways of biotransformation, detoxification, apoptosis, oxidative stress and cell cycle. It has been shown for the first time that genes corresponding to circadian rhythms are affected by benzene. Results suggest that gene expression profile might serve as potential biomarkers of hepatotoxicity during benzene exposure.


2018 ◽  
Vol 33 (4) ◽  
pp. 666-679 ◽  
Author(s):  
E H Ernst ◽  
S Franks ◽  
K Hardy ◽  
P Villesen ◽  
K Lykke-Hartmann

Author(s):  
Gustavo Deco ◽  
Kevin Aquino ◽  
Aurina Arnatkevičiūtė ◽  
Stuart Oldham ◽  
Kristina Sabaroedin ◽  
...  

AbstractBrain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles and MRI-derived estimates of myeloarchitecture. We further show that regional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional activity timescales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptional data to constrain models of large-scale brain function.


2003 ◽  
Vol 90 (10) ◽  
pp. 688-697 ◽  
Author(s):  
Andrew Filer ◽  
Ewan Ross ◽  
Margarita Bofill ◽  
Stuart Martin ◽  
Mike Salmon ◽  
...  

SummaryWe investigated the extent to which fibroblasts isolated from diverse tissues differ in their capacity to modulate inflammation by comparing the global gene expression profiles of cultured human fibroblasts from skin, acute and chronically inflamed synovium, lymph node and tonsil. The responses of these fibroblasts to TNF-α, IFN-γ and IL-4 stimulation were markedly different, as revealed by hierarchical cluster analysis and principal component analysis. In the absence of exogenous cytokine, syn-ovial and skin fibroblasts exhibited similar patterns of gene expression. However their transcriptional profiles diverged upon treatment with TNF-α.This proved to be biologically relevant, as TNF-α induced the secretion of different patterns and amounts of IL-6, IL-8 and CCL2 (MCP-1) in the two fibroblast types. Co-culture of skin or synovial fibroblasts with synovial fluid-derived mononuclear cells provided further evidence that these transcriptional differences were functionally significant in an ex vivo setting. Interestingly, the transcriptional response of skin fibroblasts to IL-4 converged with that of TNF-α-treated synovial fibroblasts, suggesting resident tissue fibroblasts and their blood-borne precursors may be imprinted by inflammatory cytokines that are characteristic of different tissues. Our data supports the concept that fibroblasts are heterogeneous, and that they contribute to the tissue-specificity of inflammatory reactions. Fibroblasts are therefore likely to play an active role in the persistence of chronic inflammatory reactions.This publication was partially financed by Serono Foundation for the Advancement of Medical Science.Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology from February 6-9, 2003 in Geneva, Switzerland.


Sign in / Sign up

Export Citation Format

Share Document