scholarly journals In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data

2021 ◽  
Vol 22 (2) ◽  
pp. 789
Author(s):  
Selina Klees ◽  
Thomas Martin Lange ◽  
Hendrik Bertram ◽  
Abirami Rajavel ◽  
Johanna-Sophie Schlüter ◽  
...  

Regulatory SNPs (rSNPs) are a special class of SNPs which have a high potential to affect the phenotype due to their impact on DNA-binding of transcription factors (TFs). Thus, the knowledge about such rSNPs and TFs could provide essential information regarding different genetic programs, such as tissue development or environmental stress responses. In this study, we use a multi-omics approach by combining genomics, transcriptomics, and proteomics data of two different Brassica napus L. cultivars, namely Zhongshuang11 (ZS11) and Zhongyou821 (ZY821), with high and low oil content, respectively, to monitor the regulatory interplay between rSNPs, TFs and their corresponding genes in the tissues flower, leaf, stem, and root. By predicting the effect of rSNPs on TF-binding and by measuring their association with the cultivars, we identified a total of 41,117 rSNPs, of which 1141 are significantly associated with oil content. We revealed several enriched members of the TF families DOF, MYB, NAC, or TCP, which are important for directing transcriptional programs regulating differential expression of genes within the tissues. In this work, we provide the first genome-wide collection of rSNPs for B. napus and their impact on the regulation of gene expression in vegetative and floral tissues, which will be highly valuable for future studies on rSNPs and gene regulation.

2021 ◽  
Vol 22 (3) ◽  
pp. 1033
Author(s):  
Abirami Rajavel ◽  
Selina Klees ◽  
Johanna-Sophie Schlüter ◽  
Hendrik Bertram ◽  
Kun Lu ◽  
...  

Transcription factors (TFs) and their complex interplay are essential for directing specific genetic programs, such as responses to environmental stresses, tissue development, or cell differentiation by regulating gene expression. Knowledge regarding TF–TF cooperations could be promising in gaining insight into the developmental switches between the cultivars of Brassica napus L., namely Zhongshuang11 (ZS11), a double-low accession with high-oil- content, and Zhongyou821 (ZY821), a double-high accession with low-oil-content. In this regard, we analysed a time series RNA-seq data set of seed tissue from both of the cultivars by mainly focusing on the monotonically expressed genes (MEGs). The consideration of the MEGs enables the capturing of multi-stage progression processes that are orchestrated by the cooperative TFs and, thus, facilitates the understanding of the molecular mechanisms determining seed oil content. Our findings show that TF families, such as NAC, MYB, DOF, GATA, and HD-ZIP are highly involved in the seed developmental process. Particularly, their preferential partner choices as well as changes in their gene expression profiles seem to be strongly associated with the differentiation of the oil content between the two cultivars. These findings are essential in enhancing our understanding of the genetic programs in both cultivars and developing novel hypotheses for further experimental studies.


2021 ◽  
Vol 66 (1) ◽  
pp. 17-25
Author(s):  
Valiollah Rameeh ◽  
Maryam Niakan ◽  
Mohammad Mohammadi

The effects of four sulphur levels: S0, S1, S2 and S3, including 0, 12, 24 and 36 kg S ha-1, respectively, along with 115 kg N ha-1 were studied on yield-related traits of oilseed rape (Brassica napus L.). The significant variance of treatments was determined for plant height, yield component characters, seed yield and oil content. The sulphur application significantly increased most of the traits compared to the S0 level. The S3 (36 kg S ha-1) treatment led to the highest mean value of plant height (132 cm) which was classified with S2 (24 kg S ha-1) in the same statistical group. Sulphur had an increasing effect on pods per plant, and it ranged from 92 to 196 for S0 and S3 applications, respectively. S0 and S1 with 92 and 121 pods per plant were grouped in the same statistical group. In addition, S2, and S3 with 165 and 196 pods per plant showed no significant statistical difference. The sulphur application significantly increased seed yield compared to control (S0 level), and it ranged from 2744 to 3215 kg ha-1 in S0 and S3, respectively. The average oil contents of 45.69, 46.96, 47.46 and 49.53 % were detected for 0, 12, 24 and 36 kg S ha-1, respectively.


2016 ◽  
Vol 10 (9) ◽  
pp. 1238-1243
Author(s):  
Gul Ghani ◽  
◽  
Raziuddin ◽  
Antonio Teixeira do Amaral Júnior ◽  
Ibni Amin Khalil ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 222 ◽  
Author(s):  
Qinfu Sun ◽  
Jueyi Xue ◽  
Li Lin ◽  
Dongxiao Liu ◽  
Jian Wu ◽  
...  

Rapeseed (Brassica napus L.) with substantial lipid and oleic acid content is of great interest to rapeseed breeders. Overexpression of Glycine max transcription factors Dof4 and Dof11 increased lipid accumulation in Arabidopsis and microalgae, in addition to modifying the quantity of certain fatty acid components. Here, we report the involvement of GmDof4 and GmDof11 in regulating fatty acid composition in rapeseeds. Overexpression of GmDof4 and GmDof11 in rapeseed increased oleic acid content and reduced linoleic acid and linolenic acid. Both qPCR and the yeast one-hybrid assay indicated that GmDof4 activated the expression of FAB2 by directly binding to the cis-DNA element on its promoters, while GmDof11 directly inhibited the expression of FAD2. Thus, GmDof4 and GmDof11 might modify the oleic acid content in rapeseed by directly regulating the genes that are associated with fatty acid biosynthesis.


1977 ◽  
Vol 57 (3) ◽  
pp. 937-943 ◽  
Author(s):  
BAHRAM GRAMI ◽  
B. R. STEFANSSON ◽  
R. J. BAKER

The estimates of broad sense heritability in the F2 generation derived from a cross involving two summer rape (Brassica napus L.) cultivars were approximately 0.26 for each of percent protein and percent oil, and 0.33 for the "sum" of protein and oil as a percentage of the seed. The number of effective factors conditioning parental differences in percent protein, percent oil, and sum were estimated as five to seven, one, and two, respectively. Average phenotypic and genotypic correlations between protein and oil content were −0.81 and −0.71, respectively. These strong negative correlations, often considered undesirable, can be utilized in oilseed breeding programs by selecting for the sum of protein and oil rather than for either component.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Matthew J. Reichlen ◽  
Venkata R. Vepachedu ◽  
Katsuhiko S. Murakami ◽  
James G. Ferry

ABSTRACT Results are presented supporting a regulatory role for the product of the MA3302 gene locus (designated MreA) previously annotated as a hypothetical protein in the methanogenic species Methanosarcina acetivorans of the domain Archaea. Sequence analysis of MreA revealed identity to the TrmB family of transcription factors, albeit the sequence is lacking the sensor domain analogous to TrmBL2, abundant in nonmethanogenic species of the domain Archaea. Transcription of mreA was highly upregulated during growth on acetate versus methylotrophic substrates, and an mreA deletion (ΔmreA) strain was impaired for growth with acetate in contrast to normal growth with methylotrophic substrates. Transcriptional profiling of acetate-grown cells identified 280 genes with altered expression in the ΔmreA strain versus the wild-type strain. Expression of genes unique to the acetate pathway decreased whereas expression of genes unique to methylotrophic metabolism increased in the ΔmreA strain relative to the wild type, results indicative of a dual role for MreA in either the direct or indirect activation of acetate-specific genes and repression of methylotrophic-specific genes. Gel shift experiments revealed specific binding of MreA to promoter regions of regulated genes. Homologs of MreA were identified in M. acetivorans and other Methanosarcina species for which expression patterns indicate roles in regulating methylotrophic pathways. IMPORTANCE Species in the domain Archaea utilize basal transcription machinery resembling that of the domain Eukarya, raising questions addressing the role of numerous putative transcription factors identified in sequenced archaeal genomes. Species in the genus Methanosarcina are ideally suited for investigating principles of archaeal transcription through analysis of the capacity to utilize a diversity of substrates for growth and methanogenesis. Methanosarcina species switch pathways in response to the most energetically favorable substrate, metabolizing methylotrophic substrates in preference to acetate marked by substantial regulation of gene expression. Although conversion of the methyl group of acetate accounts for most of the methane produced in Earth’s biosphere, no proteins involved in the regulation of genes in the acetate pathway have been reported. The results presented here establish that MreA participates in the global regulation of diverse methanogenic pathways in the genus Methanosarcina. Finally, the results contribute to a broader understanding of transcriptional regulation in the domain Archaea.


2004 ◽  
Vol 55 (2) ◽  
pp. 187 ◽  
Author(s):  
H. N. Asghar ◽  
Z. A. Zahir ◽  
M. Arshad

One hundred rhizobacteria previously isolated from the rhizospheres of Brassica species were screened for their growth promoting activity in Brassica napus L. under gnotobiotic conditions. Results revealed that 58% of the rhizobacteria increased root length (up to 139%), 39% enhanced shoot length (up to 78%), and shoot weight (up to 72%) of Brassica napus L. Based upon growth promotion of B. napus seedlings under gnotobiotic conditions, 10 promising plant-growth-promoting rhizobacteria (PGPR) were selected and tested for their effectiveness in growth promotion, yield, and oil content of B. napus grown in pots. The pot trials revealed that inoculation with selected PGPR increased plant height, root length, number of branches per plant, stem diameter, number of pods per plant, 1000-grain weight, grain yield, and oil content over a range of 7–57% above the uninoculated control. These isolates were then assayed for their ability to produce auxins in vitro in the presence and absence of L-tryptophan. Regression analysis showed that in vitro auxin production by these bacteria was significantly related to the number of branches and oil content of B. napus. It is highly likely that improvement in growth and yield of the inoculated plants is due to an increase in the number of branches per plant, since there was a positive correlation of this growth parameter with the number of pods per plant, 1000-grain weight, grain yield, and seed oil content. Results indicated that simultaneous screening of rhizobacteria for growth promotion under gnotobiotic conditions and in vitro production of auxins could be a useful approach for selecting effective PGPR.


2012 ◽  
Vol 126 (2) ◽  
pp. 435-441 ◽  
Author(s):  
Tobias Würschum ◽  
Hans Peter Maurer ◽  
Felix Dreyer ◽  
Jochen C. Reif

1990 ◽  
Vol 70 (3) ◽  
pp. 857-859 ◽  
Author(s):  
W. D. BEVERSDORF ◽  
D. J. HUME ◽  
P. GOSTOVIC ◽  
G. CHU ◽  
W. MONTMINY ◽  
...  

OAC Triumph is a canola quality, summer-rape (Brassica napus L.) cultivar resistant to s-triazine herbicides and tolerant to as-triazinone herbicides. In 22 trials over 3 yr in Ontario it has averaged 2% higher in yield and had higher oil content, better lodging resistance and fewer green seeds at harvest than the s-triazine-resistant cultivar OAC Triton. In 12 trials over 3 yr in Western Canada, OAC Triumph exhibited similar advantages over OAC Triton.Key words: Rape (summer), s-triazine-resistant, cultivar description


Sign in / Sign up

Export Citation Format

Share Document