regulatory snps
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Brittany Anne Baur ◽  
Junha Shin ◽  
Jacob Schreiber ◽  
Shilu Zhang ◽  
Yi Zhang ◽  
...  

Understanding the impact of regulatory variants on complex phenotypes is a significant challenge because the genes and pathways that are targeted by such variants are typically unknown. Furthermore, a regulatory variant might influence a particular gene's expression in a cell type or tissue-specific manner. Cell-type specific long-range regulatory interactions that occur between a distal regulatory sequence and a gene offers a powerful framework for understanding the impact of regulatory variants on complex phenotypes. However, high-resolution maps of such long-range interactions are available only for a handful of model cell lines. To address this challenge, we have developed L-HiC-Reg, a Random Forests based regression method to predict high-resolution contact counts in new cell lines, and a network-based framework to identify candidate cell line-specific gene networks targeted by a set of variants from a Genome-wide association study (GWAS). We applied our approach to predict interactions in 55 Roadmap Epigenome Consortium cell lines, which we used to interpret regulatory SNPs in the NHGRI GWAS catalogue. Using our approach, we performed an in-depth characterization of fifteen different phenotypes including Schizophrenia, Coronary Artery Disease (CAD) and Crohn's disease. In CAD, we found differentially wired subnetworks consisting of known as well as novel gene targets of regulatory SNPs. Taken together, our compendium of interactions and associated network-based analysis pipeline offers a powerful resource to leverage long-range regulatory interactions to examine the context-specific impact of regulatory variation in complex phenotypes.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 790
Author(s):  
Selina Klees ◽  
Felix Heinrich ◽  
Armin Otto Schmitt ◽  
Mehmet Gültas

Transcription factors (TFs) govern transcriptional gene regulation by specifically binding to short DNA motifs, known as transcription factor binding sites (TFBSs), in regulatory regions, such as promoters. Today, it is well known that single nucleotide polymorphisms (SNPs) in TFBSs can dramatically affect the level of gene expression, since they can cause a change in the binding affinity of TFs. Such SNPs, referred to as regulatory SNPs (rSNPs), have gained attention in the life sciences due to their causality for specific traits or diseases. In this study, we present agReg-SNPdb, a database comprising rSNP data of seven agricultural and domestic animal species: cattle, pig, chicken, sheep, horse, goat, and dog. To identify the rSNPs, we constructed a bioinformatics pipeline and identified a total of 10,623,512 rSNPs, which are located within TFBSs and affect the binding affinity of putative TFs. Altogether, we implemented the first systematic analysis of SNPs in promoter regions and their impact on the binding affinity of TFs for livestock and made it usable via a web interface.


2021 ◽  
Vol 22 (16) ◽  
pp. 8792
Author(s):  
Naixia Ren ◽  
Qingqing Liu ◽  
Lingjie Yan ◽  
Qilai Huang

Functional characterization of cancer risk-associated single nucleotide polymorphism (SNP) identified by genome-wide association studies (GWAS) has become a big challenge. To identify the regulatory risk SNPs that can lead to transcriptional misregulation, we performed parallel reporter gene assays with both alleles of 213 prostate cancer risk-associated GWAS SNPs in 22Rv1 cells. We disclosed 32 regulatory SNPs that exhibited different regulatory activities with two alleles. For one of the regulatory SNPs, rs684232, we found that the variation altered chromatin binding of transcription factor FOXA1 on the DNA region and led to aberrant gene expression of VPS53, FAM57A, and GEMIN4, which play vital roles in prostate cancer malignancy. Our findings reveal the roles and underlying mechanism of rs684232 in prostate cancer progression and hold great promise in benefiting prostate cancer patients with prognostic prediction and target therapies.


2021 ◽  
Vol 22 (12) ◽  
pp. 6454
Author(s):  
Arina O. Degtyareva ◽  
Elena V. Antontseva ◽  
Tatiana I. Merkulova

The vast majority of the genetic variants (mainly SNPs) associated with various human traits and diseases map to a noncoding part of the genome and are enriched in its regulatory compartment, suggesting that many causal variants may affect gene expression. The leading mechanism of action of these SNPs consists in the alterations in the transcription factor binding via creation or disruption of transcription factor binding sites (TFBSs) or some change in the affinity of these regulatory proteins to their cognate sites. In this review, we first focus on the history of the discovery of regulatory SNPs (rSNPs) and systematized description of the existing methodical approaches to their study. Then, we brief the recent comprehensive examples of rSNPs studied from the discovery of the changes in the TFBS sequence as a result of a nucleotide substitution to identification of its effect on the target gene expression and, eventually, to phenotype. We also describe state-of-the-art genome-wide approaches to identification of regulatory variants, including both making molecular sense of genome-wide association studies (GWAS) and the alternative approaches the primary goal of which is to determine the functionality of genetic variants. Among these approaches, special attention is paid to expression quantitative trait loci (eQTLs) analysis and the search for allele-specific events in RNA-seq (ASE events) as well as in ChIP-seq, DNase-seq, and ATAC-seq (ASB events) data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Pierre Sanchez ◽  
Dominique Rocha ◽  
Mathieu Charles ◽  
Mekki Boussaha ◽  
Chris Hozé ◽  
...  

AbstractThe mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50–0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.


Author(s):  
Ilakya Selvarajan ◽  
Anu Toropainen ◽  
Kristina M. Garske ◽  
Maykel López Rodríguez ◽  
Arthur Ko ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 789
Author(s):  
Selina Klees ◽  
Thomas Martin Lange ◽  
Hendrik Bertram ◽  
Abirami Rajavel ◽  
Johanna-Sophie Schlüter ◽  
...  

Regulatory SNPs (rSNPs) are a special class of SNPs which have a high potential to affect the phenotype due to their impact on DNA-binding of transcription factors (TFs). Thus, the knowledge about such rSNPs and TFs could provide essential information regarding different genetic programs, such as tissue development or environmental stress responses. In this study, we use a multi-omics approach by combining genomics, transcriptomics, and proteomics data of two different Brassica napus L. cultivars, namely Zhongshuang11 (ZS11) and Zhongyou821 (ZY821), with high and low oil content, respectively, to monitor the regulatory interplay between rSNPs, TFs and their corresponding genes in the tissues flower, leaf, stem, and root. By predicting the effect of rSNPs on TF-binding and by measuring their association with the cultivars, we identified a total of 41,117 rSNPs, of which 1141 are significantly associated with oil content. We revealed several enriched members of the TF families DOF, MYB, NAC, or TCP, which are important for directing transcriptional programs regulating differential expression of genes within the tissues. In this work, we provide the first genome-wide collection of rSNPs for B. napus and their impact on the regulation of gene expression in vegetative and floral tissues, which will be highly valuable for future studies on rSNPs and gene regulation.


2021 ◽  
Vol 4 ◽  
pp. 100096
Author(s):  
Andrea Virginia Ruiz Ramírez ◽  
Adolfo Flores-Saiffe Farías ◽  
Rocío del Carmen Chávez Álvarez ◽  
Ernesto Prado Montes de Oca

PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009119
Author(s):  
Li Chen ◽  
Xiaorong Gu ◽  
Xuetao Huang ◽  
Rui Liu ◽  
Jinxiu Li ◽  
...  

Avian eggshell color is an interesting genetic trait. Here, we report that the blue eggshell color of the domestic duck is caused by two cis-regulatory G to A transitions upstream of ABCG2, which encodes an efflux transporter. The juxtaposed blue eggshell allele A-A exhibited higher promoter activity and stronger nuclear protein binding capacity than the white eggshell allele G-G. Transcription factor analysis suggested differential binding capability of CTCF between blue eggshell and white eggshell alleles. Knockdown of CTCF expression significantly decreased the promoter activity of the blue eggshell but not the white eggshell allele. DNA methylation analysis revealed similar high methylation of the region upstream of the CTCF binding sites in both blue-eggshelled and white-eggshelled ducks. However, DNA methylation levels downstream of the binding sites were decreased and 35% lower in blue-eggshelled ducks than in white-eggshelled ducks. Consistent with the in vitro regulatory pattern of causative sites, ABCG2 exhibited higher expression in uteruses of blue-eggshelled ducks and also showed polarized distribution in their endometrial epithelial cells, distributing at the apical surface of endometrial epithelial cells and with orientation toward the uterine cavity, where the eggshell is pigmented. In conclusion, our results suggest that two cis-regulatory SNPs upstream of ABCG2 are the causative mutations for blue eggshells in ducks. The blue eggshell variant up-regulated ABCG2 expression through recruiting CTCF binding, which may function as a barrier element to shield the downstream region from high methylation levels present upstream. ABCG2 was identified as the only candidate causative gene for blue eggshells; it may function as an efflux transporter of biliverdin to the uterine cavity.


Sign in / Sign up

Export Citation Format

Share Document