scholarly journals Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture

2021 ◽  
Vol 22 (4) ◽  
pp. 1819
Author(s):  
Ahmad Hassan Chaudhry ◽  
Shafa Nayab ◽  
Syed Bilal Hussain ◽  
Muqarrab Ali ◽  
Zhiyong Pan

The productivity of agricultural produce is fairly dependent on the availability of nutrients and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes that support plant growth and development. However, it has been largely forgotten in fertilization management strategies to increase crop production, which leads to severe reductions in plant growth and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+ uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize the available information about the responses of Mg deficiency on plant growth and development, which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic and genetic biofortification.

2011 ◽  
Vol 28 (2) ◽  
pp. 97-111 ◽  
Author(s):  
Taqi Khan ◽  
Mohd Mazid ◽  
Firoz Mohammad

A review of ascorbic acid potentialities against oxidative stress induced in plantsAscorbic acid (AA) currently holds a significant position in plant physiology, mainly due to its possession of antioxidant and cellular reductant etc.properties and its diverse roles in plant growth and development and the regulation of a broad spectrum of plant cellular mechanisms against environmental stresses. Some researchers suggest that endogenous AA has been implicated in the promotion of plant growth and development by involvement in a complex and enigmatic array of phytohormone-regulated signalling networks that ties together different environmental stresses. As it is evident from the present review, recent progress on AA potentiality in the tolerance of plants to environmental stresses has been impressive. Indeed, AA plays an important role in resistance to oxidative stresses such as heavy metal, saline, ultra-violet etc. Rapidly increasing evidence indicates that AA is centrally involved in several physiological processes but there has been much disagreement regarding the mechanism(s) by which AA reduces the damaging effects of such stresses in plants. Perhaps the role of AA in mediating tolerance to abiotic stress (e.g. UV, salinity and temperature, etc.) will lead to a greater research focus in the near future. In addition, AA might provide a suitably attractive target for the enhancement of crop production.


2020 ◽  
Author(s):  
Om Prakash Narayan ◽  
Nidhi Verma ◽  
Abhimanyu Jogawat ◽  
Meenakshi Dua ◽  
Atul Kumar Johri

ABSTRACTSulfur is an important macronutrient required for the growth, development of plants and is a key component of many metabolic pathways. We have functionally characterized a high-affinity sulphate transporter (PiSulT) from an endophytic fungus Serendipita indica. The PiSulT belongs to the major facilitator superfamily (MFS) of membrane transporter. The PiSulT functionally complements the yeast sulphate transporter mutant HK14. PiSulT is a high-affinity sulphate transporter, having Km 15μM. We found enhanced expression of PiSulT in external fungal hyphae which helps the fungus in the acquisition of sulphate from the soil. When knockdown (KD)-PiSulT-P.indica colonized with the plant, it results in an 8-fold reduction in the transfer of sulphate to the colonized plants as compared to the plants colonized with the WT S. indica, which suggests that PiSulT is playing a role in sulphate transfer from soil to host plant. Further, plants colonized with the WT S. indica were found to be healthy in comparison to the plants colonized with the KD-PiSulT-P.indica. Additionally, S. indica colonization provides a positive effect on total sulfur content and on plant metabolites like sulfate ions and glutathione, particularly under low sulphate condition. We observed that the expression of sulfur assimilation pathway genes of S. indica and plant is dependent on the availability of sulphate and on the colonization with the plant. Our study highlights the importance of PiSulT in the improvement of sulfur nutrition of host plant particularly under low sulphate condition and in plant growth development. This study will open new vistas to use S. indica as a bio-fertilizer in the sulphate deficient field to improve crop production.One-Sentence SummaryHigh-affinity sulphate transporter of Serendipita indica (PiSulT) transfer sulphate from soil to plant under low sulphate condition and improve plant growth and development.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Girmay Kalayu

Phosphorus (P) is a macronutrient required for the proper functioning of plants. Because P plays a vital role in every aspect of plant growth and development, deficiencies can reduce plant growth and development. Though soil possesses total P in the form of organic and inorganic compounds, most of them remain inactive and thus unavailable to plants. Since many farmers cannot afford to use P fertilizers to reduce P deficits, alternative techniques to provide P are needed. Phosphate solubilizing microbes (PSMs) are a group of beneficial microorganisms capable of hydrolyzing organic and inorganic insoluble phosphorus compounds to soluble P form that can easily be assimilated by plants. PSM provides an ecofriendly and economically sound approach to overcome the P scarcity and its subsequent uptake by plants. Though PSMs have been a subject of research for decades, manipulation of PSMs for making use of increasing fixed P in the soil and improving crop production at the field level has not yet been adequately commercialized. The purpose of this review is to widen the understanding of the role of PSMs in crop production as biofertilizers.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 788
Author(s):  
Md. Quamruzzaman ◽  
S. M. Nuruzzaman Manik ◽  
Sergey Shabala ◽  
Meixue Zhou

Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants’ adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow “window” in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost–benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.


2020 ◽  
Vol 1 ◽  
Author(s):  
Miguel Julio Machado Guimarães ◽  
Welson Lima Simões ◽  
Juliane Rafaele Alves Barros ◽  
Lilia Gomes Willadino

AbstractGrowing in a saline environment causes changes in important physiological processes that are directly related to plant growth and development. In this study we evaluated the effect of salinity on transpiration of sorghum plants in semi-arid conditions and found that the highest rates of transpiration were observed in the hottest hours of the day, between 10 a.m. and 3 p.m., with plants subjected to the saline environment having their transpiration reduced by up to 70% when compared to the non-saline environment. This behavior can be reflected in reductions in plant growth and development due to reduced water absorption by the roots, consequently causing an imbalance of nutrients in the plant due to low absorption rate and competition between nutrients and salts in the preferred routes of absorption in the roots.


2021 ◽  
Vol 109 (1) ◽  
pp. 37-43
Author(s):  
V. Аlmashova ◽  
◽  
S. Onishenko ◽  
О. Yevtushenko ◽  
◽  
...  

Influence of vegetable pea seed treatment with boron and molybdenum on plant growth and development depending on sowing period The article is devoted to the influence of terms of sowing and processing of pea seeds with boron and molybdenum fertilizers on plant development in the conditions of the south of Ukraine. The possibility of obtaining a sustainable harvest and high quality pea products for its further preservation has been proved. It is established that the action of boron and molybdenum delays the onset of phenological phases of culture development, and the use of two different sowing dates allows to delay the onset of the phase of technological maturity for 6 days. This is important when harvesting for minimal crop losses of vegetable peas in southern Ukraine. Keywords: vegetable peas, nutrients, boron and molybdenum fertilizers, physiological processes, leaf surface index.


2021 ◽  
Vol 3 ◽  
Author(s):  
Ayman EL Sabagh ◽  
Sonia Mbarki ◽  
Akbar Hossain ◽  
Muhammad Aamir Iqbal ◽  
Mohammad Sohidul Islam ◽  
...  

Plant growth regulators are naturally biosynthesized chemicals in plants that influence physiological processes. Their synthetic analogous trigger numerous biochemical and physiological processes involved in the growth and development of plants. Nowadays, due to changing climatic scenario, numerous biotic and abiotic stresses hamper seed germination, seedling growth, and plant development leading to a decline in biological and economic yields. However, plant growth regulators (PGRs) can potentially play a fundamental role in regulating plant responses to various abiotic stresses and hence, contribute to plant adaptation under adverse environments. The major effects of abiotic stresses are growth and yield disturbance, and both these effects are directly overseen by the PGRs. Different types of PGRs such as abscisic acid (ABA), salicylic acid (SA), ethylene (ET), and jasmonates (JAs) are connected to boosting the response of plants to multiple stresses. In contrast, PGRs including cytokinins (CKs), gibberellins (GAs), auxin, and relatively novel PGRs such as strigolactones (SLs), and brassinosteroids (BRs) are involved in plant growth and development under normal and stressful environmental conditions. Besides, polyamines and nitric oxide (NO), although not considered as phytohormones, have been included in the current review due to their involvement in the regulation of several plant processes and stress responses. These PGRs are crucial for regulating stress adaptation through the modulates physiological, biochemical, and molecular processes and activation of the defense system, upregulating of transcript levels, transcription factors, metabolism genes, and stress proteins at cellular levels. The current review presents an acumen of the recent progress made on different PGRs to improve plant tolerance to abiotic stress such as heat, drought, salinity, and flood. Moreover, it highlights the research gaps on underlying mechanisms of PGRs biosynthesis under stressed conditions and their potential roles in imparting tolerance against adverse effects of suboptimal growth conditions.


HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 87-96
Author(s):  
Maanea L. Ramphinwa ◽  
Godwin R.A. Mchau ◽  
Ntakadzeni E. Madala ◽  
Ndamulelo Nengovhela ◽  
John B.O. Ogola ◽  
...  

Horticultural practices and quality of bush tea (Athrixia phylicoides DC.) are critical for herbal tea industrialization. The objective of the current study was to determine the effect of selected shade nets and seasonal variation on plant growth and development, and hydroxycinnamic acid content of field-grown bush tea. The trial was laid out in a randomized complete block design consisting of three shade nets (black, green, and white) and control or full sunlight with three different light intensities (40%, 50%, and 80%) replicated three times. Proportion of intercepted radiation by the canopy, chlorophyll content, plant height, and fresh and dry mass were measured, and hydroxycinnamic acid accumulation was determined. In addition, hydroxycinnamic acid composition was determined using liquid chromatography linked to mass spectrometry (LC-MS). The application of shade nets resulted in plant growth and yield reduction as compared with the plants exposed to full sunlight during summer followed by white shade net. The accumulation of hydroxycinnamic acid was higher in 80% white shade net plots compared with unshaded plants (control) and the other shade nets. Therefore, lack of shading provides a conducive environment to enhance plant growth and development of bush tea. The white shade net (80%) was an effective microclimate tool to enhance accumulation of caffeoylquinic acid (m/z 353), p-coumaric acids (m/z 337), dicaffeoylquinic acid (m/z 515), and tricaffeoylquinic acids of bush tea. This study is the first to demonstrate light as a determining factor for production of chlorogenates in bush tea plants. Future studies will be conducted to determine the effect of light on extracts of the bush tea using different solvents.


Jurnal Agrium ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Usnawiyah Usnawiyah ◽  
Khaidir Khaidir

Arbuscular mycorrhiza expected to increase the growth and yield of soybean. However, during the application requires another materials as growth media or spores carrier such as compos and zeolite. Zeolites are used as promoters  for plant  growth and  development for the better  through  the efficient use of fertilizers. These minerals can retain  nitrogen content in the soil, improve the quality of solid organic  fertilizer and liquid waste. Zeolites can improve the efficiency of fertilizer use, both in stimulating plant growth and development and to increase agricultural  output. Furthermore, it will support the work function of arbuscular  mycorrhiza as root simbion


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1176e-1176
Author(s):  
Kent D. Kobayashi

A simulation model consists of equations that represent the important relationships between components in a system, e.g., a plant or plant part. One of the purposes of simulation models is to simulate plant growth or plant growth processes to help further our understanding of plant growth and development. Simulation models are mechanistic or process based models that account for the physiological processes occurring in the system.Model development involves several steps. We define the problem and defuse the system, its entities, their attributes, and important relationships. A conceptual model is often expressed visually in a relational diagram showing the components and their relationships. This diagram is formally expressed as a simulation model through the use of equations repenting the relationships in the system. We often make assumptions regarding the components and their relationships to simply the model or because of a lack of knowledge. Simulation models are generally written using a simulation language such as CSMP or STELLA® or with a programming language such as FORTRAN or BASIC. The model is verified through checking the appropriateness of the relationships and the integrity of the computer program. The model is then validated through seeing bow well it simulates the behavior of the system. Simulation models provide additional insights by enabling us to ask “What if” questions by changing of the conditions of the model and seeing the resulting changes in plant growth.


Sign in / Sign up

Export Citation Format

Share Document