scholarly journals Effect of Ppd-A1 and Ppd-B1 Allelic Variants on Grain Number and Thousand Kernel Weight of Durum Wheat and Their Impact on Final Grain Yield

2018 ◽  
Vol 9 ◽  
Author(s):  
Jose M. Arjona ◽  
Conxita Royo ◽  
Susanne Dreisigacker ◽  
Karim Ammar ◽  
Dolors Villegas
2012 ◽  
Vol 60 (3) ◽  
pp. 209-219
Author(s):  
G. Micskei ◽  
T. Árendás ◽  
Z. Berzsenyi

In a long-term maize monoculture experiment set up on the active ingredient equivalence principle, changes in the yield components were investigated over a period of three years (2005–2007) as a function of the fertiliser treatments, and the values of the growth parameters HI, LAI, NAR and CGR were calculated using the classical method of growth analysis.The results indicated that optimum N supplies and the year effect made a substantial contribution both to the grain number per ear and to the thousand-kernel weight. In the course of correlation analysis, both Pearson’s correlation coefficient and multiple regression analysis demonstrated that the grain yield was in close positive correlation with these yield components, and with the maximum value of dry matter production and the harvest index. The two yield components explained 76% of the grain yield, and the effect of thousand-kernel weight was around 3.75 times as great as that of the grain number per ear (β = 0.721 vs. 0.192). On the basis of partial correlation analysis, the maximum value of total dry matter and the thousand-kernel weight were jointly responsible for around 60% of the variance in maize grain yield. Analysis using the “Enter” method showed that the two yield components explained 62% and 59% of the grain yield in wet years (R22005 = 62.3%; R22006 = 58.8%), while in the dry year neither the thousand-kernel weight nor the grain number per ear had a significant effect on the yield (R22007 = 4.5%).


2014 ◽  
Vol 69 (3) ◽  
pp. 11-19
Author(s):  
NASER SABAGHNIA

Durum wheat has been subjected to intense cultivation due to its economic importance and it occupies second place after bread wheat in many regions. The experiment was organized in a randomized complete block design with four replications using thirteen newly improved durum wheat genotypes and one check cultivar as Dehdasht. Several traits including plant height, peduncle length, spike length, growth vigority, agronomic score, days to heading, days to physiological maturity, thousand kernel weight, test weight and grain yield were measured. Significant differences were observed for all the traits among durum wheat genotypes indicating considerable amount of variation. The estimates of the coefficient of variation were high for spike length and growth vigority. The number of days to heading ranged from 106.5 (G1 and G3) to 111.8 (G10) while G13 had the longest (146.0) and G2 (142.5) and G11 (142.3) had the shortest days to physiological maturity. The test weight ranged from 378.5 in G10 to 397.0 in G8, but the check cultivar indicated the highest thousand kernel weight (44.0 g). According to grain yield, G3 had the maximum yield (6720 kg ha-1) and G7 had the minimum yield (5047 kg ha-1). The high yielding genotypes had high values for growth vigority, spike length, peduncle length, agronomic score and thousand kernel weight. The information on the agro-morphological traits of the studied durum wheat genotypes will be helpful to plant breeders in constructing their breeding materials and implementing selection strategies.


2021 ◽  
Vol 22 (4) ◽  
pp. 2053
Author(s):  
Judit Bányai ◽  
Marco Maccaferri ◽  
László Láng ◽  
Marianna Mayer ◽  
Viola Tóth ◽  
...  

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


2009 ◽  
Vol 7 ◽  
pp. 63-69
Author(s):  
PCP Chaurasia ◽  
E Duveiller

An experiment was conducted at agronomy farm of Agriculture research Station, Tarahara,Nepal for three consecutive years viz 2000/2001,2001/2002, and 2002/2003 to evaluate theeffects of different cultural practices on leaf blight diseases of wheat caused by Bipolarissorokiniana under terai conditions. The experiment was conducted in factorial RandomizedComplete Block Design with four replications. Four factors, two wheat verities RR-21 andNepal 297,two number of irrigations (two and three irrigations), two doses of Nitrogen fertilizerviz. 60kg N/ha and 120 kg N/ha and two dates of sowing of wheat were examined. Differentyield components, grain yield (kg/plot) and disease severity were recorded to judge the effects ofthese factors on severity of leaf blight of wheat. Nepal Line 297 had significantly less AUDPCbased on flag leaf infection and whole plan as compared to RR-21. Number of irrigations had nosignificant effect on AUDPC, as there was frequent rain during experimental period. Doses ofNitrogen fertilizer had significant effect on AUDPC based on flag leaf infection. It was higher incase of 60 kg N/ha. The third week of November sowing of wheat had lower value of AUDPCas compared to December sowing. Plant height, panicle lengths were highly significantly higherin case of RR-21 as compared to Nepal-297. Thousand kernel weight, and grain yield kg/ha weresignificantly higher in Nepal-297. All agronomic parameters except thousand kernel weight andnumber of tillers/plan were significantly higher in 120kg N/ha. The third week of Novembersowing of wheat had less plant height and panicle length, higher thousand kernel weight andmore grain yield. Leaf blight severity was highly significantly less in case of Nepal-297. Dosesof Nitrogen fertilizer had significant effect on plant height, panicle length, thousand kernelweight, percentage flag leaf infection and AUDPC based on flag leaf infection. Based on theresults of three years of experimentations, it can be concluded that Nepal-297 had less disease,number of irrigations had no effect on disease severity, higher doses of nitrogen fertilizer hadless flag infection and late sowing of wheat also had less disease. Numbers of irrigation's effectswere inconclusive as there were frequent rains during experimentation period. Based on aboveconclusion, it is recommended that growing wheat verity like Nepal-297, use of higher doses ofnitrogen fertilizer and sowing of wheat / first week of Dec help in minimizing the severity of leafblight. However late sowing had lowered grain yield.Key words: AUDPC; culture practices; disease management; leaf blightDOI: 10.3126/narj.v7i0.1870Nepal Agriculture Research Journal Vol.7 2006 pp.63-69


Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


2018 ◽  
Vol 3 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Enzo David Ferrari ◽  
Víctor Aníbal Ferreira ◽  
Ezequiel Martín Grassi ◽  
Aurora María Teresita Picca ◽  
Héctor Antonio Paccapelo

Abstract Triticale (x Triticosecale Wittmack) is a cereal used in Argentina as a winter seasonal pasture or feeding grain. Efforts made on breeding have led to varieties with potential grain yield similar or greater than with wheat. The aim of this study was to determine the gene effects, heritability, genetic gain, heterosis and inbreeding depression in various quantitative traits of a cross from contrasting lines of triticale using generation means analysis. The thousand kernel weight was adjusted to a model of additive-dominance, while the rest of the traits exhibited significant epistatic effects: additive x additive (i) for hectoliter weight, additive x dominance (j) for number grains per spike and grain yield per plant. Other traits showed a more complex as inheritance additive x additive (i) and additive x dominance (j) interactions effects for spike length or additive x dominance (j) and dominance x dominance (l) interactions effects for number of spikes per plant and number of spikelets per spike. High values of heritability and genetic gain were also detected for grain yield, spikelets per spike, spike per plant and hectoliter weight. All traits except spike per plant had positive relative mid-parent heterosis, but none resulted in positive heterobeltiosis, therefore this cross is not recommended for obtaining hybrids varieties. Selection in early generations by thousand kernel weight and hectoliter weight would be efficient, while the selection in advanced generations where segregation is minimal would be recommended for the remaining traits.


2016 ◽  
Vol 135 (5) ◽  
pp. 567-573 ◽  
Author(s):  
Wenxin Liu ◽  
Willmar L. Leiser ◽  
Jochen C. Reif ◽  
Matthew R. Tucker ◽  
Dominik Losert ◽  
...  

2014 ◽  
Vol 94 (5) ◽  
pp. 891-903 ◽  
Author(s):  
M. R. Fernandez ◽  
W. E. May ◽  
S. Chalmers ◽  
M. E. Savard ◽  
A. K. Singh

Fernandez, M. R., May, W. E., Chalmers, S., Savard, M. E. and Singh, A. K. 2014. Are early foliar fungicide applications on durum wheat grown in southeast Saskatchewan beneficial in increasing grain productivity? Can. J. Plant. Sci. 94: 891–903. Producers have expressed interest in applying fungicides early in the development of durum wheat to reduce disease severity and increase grain yield. To address this issue, a field trial was conducted in southeast Saskatchewan (2004–2006) to determine the impacts of single and double foliar fungicide (tebuconazole) applications at various growth stages on leaf spotting, Fusarium head blight/Fusarium-damaged kernels, deoxynivalenol concentration, dark kernel discolouration, and grain traits of durum wheat. In most cases, application at stem elongation was not effective in reducing Fusarium diseases, or improving yield and grain characteristics. Application at flag leaf emergence was more effective, but for the most part, application at anthesis resulted in the most consistent reduction in disease levels, and improvement in test weight. Double fungicide applications (stem elongation or flag leaf emergence, and anthesis) were not more effective in disease control than a single application at anthesis. Grain yield did not differ significantly among any of the treatments. In contrast to Fusarium diseases and leaf spotting, fungicide applications at stem elongation and/or flag leaf emergence resulted in increased kernel weight and percentage dark kernel discolouration, which was significant in 2005 (10.53–10.60% total kernel discolouration in the stem and flag leaf treatments vs. 6.13% for the untreated control). In one or more years, kernel weight was negatively associated with Fusarium disease variables and leaf spotting, but positively associated with kernel discolouration. We conclude that under variable environmental conditions in Saskatchewan, early preventative fungicide use on durum wheat should not be recommended as a strategy to improve productivity, and might even result in increases in dark kernel discolouration and grain downgrading.


Author(s):  
Priscilla Glenn ◽  
Junli Zhang ◽  
Gina Brown-Guedira ◽  
Noah DeWitt ◽  
Jason P. Cook ◽  
...  

Abstract Key message We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Abstract Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


Sign in / Sign up

Export Citation Format

Share Document