scholarly journals Additive Benefits of Radium-223 Dichloride and Bortezomib Combination in a Systemic Multiple Myeloma Mouse Model

2021 ◽  
Vol 22 (11) ◽  
pp. 5570
Author(s):  
Mari I. Suominen ◽  
Jenni Mäki-Jouppila ◽  
Anna Huhtinen ◽  
Birgitta Sjöholm ◽  
Jukka P. Rissanen ◽  
...  

Osteolytic bone disease is a hallmark of multiple myeloma (MM) mediated by MM cell proliferation, increased osteoclast activity, and suppressed osteoblast function. The proteasome inhibitor bortezomib targets MM cells and improves bone health in MM patients. Radium-223 dichloride (radium-223), the first targeted alpha therapy approved, specifically targets bone metastases, where it disrupts the activity of both tumor cells and tumor-supporting bone cells in mouse models of breast and prostate cancer bone metastasis. We hypothesized that radium-223 and bortezomib combination treatment would have additive effects on MM. In vitro experiments revealed that the combination treatment inhibited MM cell proliferation and demonstrated additive efficacy. In the systemic, syngeneic 5TGM1 mouse MM model, both bortezomib and radium-223 decreased the osteolytic lesion area, and their combination was more effective than either monotherapy alone. Bortezomib decreased the number of osteoclasts at the tumor–bone interface, and the combination therapy resulted in almost complete eradication of osteoclasts. Furthermore, the combination therapy improved the incorporation of radium-223 into MM-bearing bone. Importantly, the combination therapy decreased tumor burden and restored body weights in MM mice. These results suggest that the combination of radium-223 with bortezomib could constitute a novel, effective therapy for MM and, in particular, myeloma bone disease.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2503-2503
Author(s):  
Sonia Vallet ◽  
Noopur Raje ◽  
MariaTeresa Fulciniti ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
...  

Abstract Osteolytic bone disease (OBD) is a frequent complication of multiple myeloma (MM), affecting 70 to 80% of the patients. OBD is characterized by imbalanced bone remodeling, due to decreased osteoblast (OB) number and increased osteoclast (OC) formation and activity. MM cells secrete osteoclastogenic factors, such as receptor activator of nuclear factor kappa B ligand (RANKL) and CCL3. In turn, OC support MM cell proliferation and survival, thus promoting a positive feedback that exacerbates bone resorption. Chemokines modulate osteoclastogenesis and promote MM cell proliferation, in particular CCL3 and its receptor CCR1 play an important role in mediating OBD in MM. MLN3897 (Millennium Pharmaceuticals, Cambridge) is a novel small molecule specific antagonist of human CCR1 (IC50 0.8 nM). It has a favorable toxicity profile in healthy volunteers and is currently undergoing phase II clinical trials in rheumatoid arthritis and multiple sclerosis. Here we evaluate the effects of MLN3897 on OC function and activity, as well as OC-MM cell interactions. Our in vitro data demonstrates a dual mechanism of action for MLN3897: it inhibits osteoclastogenesis and also overcomes the protective effects conferred by OC on MM cells. Our data further shows inhibition of OC formation and function by 40 and 70%, respectively, following MLN3897 treatment. This is mediated via inhibition of the fusion process and is accompanied by downregulation of pERK and c-fos signaling. To analyze its effect on MM cells, we verified CCR1 and CCR5 expression levels on MM1.S (15% and 3.6%) and OPM1 (3.8 and 0.7%). Our data show that OC secrete high levels of CCL3 which triggers MM cell migration; and that MLN3897 abrogates these effects by inhibiting the PI3K/Akt pathway. Moreover, MLN3897 overcomes the proliferative advantage conferred by OC on MM cells, as demonstrated in INA6, MM1.S and MM patient derived primary cells. OC induced MM cell proliferation is mediated by adhesion and cytokine secretion, and MLN3897 abrogates both MM cell-to-OC adhesion and interleukin-6 (IL6) secretion by OC in a co-culture system, thereby resulting in decreased MM cell survival and proliferation. To confirm these in vitro results, in vivo studies in a SCID-hu mouse model are underway. Implanted SCID-Hu INA-6 bearing mice are treated with twice daily oral MLN3897 for 3 weeks. The evaluation of osteolytic lesions and OC, OB and endothelial cell number; and tumor burden will be presented. Our in vitro results therefore show novel biologic sequelae of CCL3 and its inhibition on both osteoclastogenesis and MM cell growth. Our in vivo experiments will further validate the role of CCR1 in a human BM microenvironment-MM model, providing the framework for clinical trials of MLN3897 for the treatment of OBD in MM.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 3024-3030 ◽  
Author(s):  
Therese Standal ◽  
Niels Abildgaard ◽  
Unn-Merete Fagerli ◽  
Berit Stordal ◽  
Øyvind Hjertner ◽  
...  

AbstractThe bone disease in multiple myeloma is caused by an uncoupling of bone formation from bone resorption. A key difference between patients with and patients without osteolytic lesion is that the latter have fewer and less active osteoblasts. Hepatocyte growth factor (HGF) is often produced by myeloma cells and is found at high concentrations in the bone marrow of patients with multiple myeloma. Here we show that HGF inhibited bone morphogenetic protein (BMP)–induced in vitro osteoblastogenesis. Thus, HGF inhibited BMP-induced expression of alkaline phosphatase in human mesenchymal stem cells (hMSCs) and the murine myoid cell line C2C12, as well as mineralization by hMSCs. Furthermore, the expression of the osteoblast-specific transcription factors Runx2 and Osterix was reduced by HGF treatment. HGF promoted proliferation of hMSCs, and the BMP-induced halt in proliferation was overridden by HGF, keeping the cells in a proliferative, undifferentiating state. BMP-induced nuclear translocation of receptor-activated Smads was inhibited by HGF, providing a possible explanation of how HGF inhibits BMP signaling. The in vitro data were supported by the observation of a negative correlation between HGF and a marker of osteoblast activity, bone-specific alkaline phosphatase (rho = −0.45, P = .008), in sera from 34 patients with myeloma. These observations suggest that HGF inhibits bone formation in multiple myeloma.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1942-1942
Author(s):  
Houfu Leng ◽  
Adel Ersek ◽  
Emma Morris ◽  
Beatriz Gamez Molina ◽  
Claire M. Edwards ◽  
...  

Abstract Multiple myeloma (MM) is an incurable cancer of plasma cells (PC), with a median survival of 5-7 years. Osteolytic bone disease and skeletal complications occur in more than 80% of MM patients and significantly contribute to the morbidity and mortality of these patients. Glycosphingolipid (GSL), an essential constituent of the outer leaflet of the cellular membrane, is altered in MM and other hematological cancers. We previously reported that GM3, a subtype of GSL promotes osteoclastogenesis. On the other hand, the GSL synthase inhibitor N-butyl-deoxynojirimycin (NB-DNJ) reduces myeloma bone disease in the 5TGM1 mouse model of MM. Mechanistically, NB-DNJ prevents osteoclast (OC) development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of the transcriptional activator NFATc1. Although NB-DNJ is an FDA-approved drug treating Gaucher's disease, it has many undesired off-target effects, such as inhibiting lysosomal and plasma membrane Beta-glucocerebrosidase and interfering with intestinal glucosidases which leads to gastrointestinal toxicities and severe weight loss. Therefore, more specific GSL inhibitors are required to minimize the side effects. Here we report a novel GSL inhibitor called Genz112638 with comparable effects as NB-DNJ but reduced side effects. Genz112638 inhibits both OC formation (p < 0.01) and MM cell growth (p < 0.0001) in vitro in a dose-dependent manner. Moreover, compared to NB-DNJ, Genz112638 more significantly improved bone condition and potentially reduced MM burden, as evidenced by the amelioration of bone loss in the 5TGM1 model of myeloma, and a reduction in the proportion of MM within bone marrow and spleen without obvious adverse effects (n=6) (p < 0.01). As excessive malignant PC in MM normally arise from germinal centre, we also checked the effects of Genz112638 on germinal centre reactions in wildtype mice. We found that Genz112638 suppresses the formation of germinal centre B cells in mouse spleen induced by sheep red blood cells (n=7). Thus, Genz112638 may affect the pathogenesis of MM disease at the initial stage. Taken together, our data elucidate a novel specific GSL inhibitor as a promising candidate drug relieving two main features of MM: bone destruction and tumour burden with negligible side effects. In vitro, it decreases OC differentiation and proliferation, and meanwhile decreases MM viability and proliferation. In vivo, it may suppress B cell formation in germinal centre, ameliorate bone destruction, and potentially interfere with the vicious cycle between increased OC and susceptibility to MM. In short, we provide a preclinical platform for GSL inhibition as a new tool against MM and its related complications. Figure. Figure. Disclosures Horwood: Genzyme: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (23) ◽  
pp. 2656-2666
Author(s):  
Marita Westhrin ◽  
Vlado Kovcic ◽  
Zejian Zhang ◽  
Siv H. Moen ◽  
Tonje Marie Vikene Nedal ◽  
...  

Abstract Most patients with multiple myeloma develop a severe osteolytic bone disease. The myeloma cells secrete immunoglobulins, and the presence of monoclonal immunoglobulins in the patient’s sera is an important diagnostic criterion. Here, we show that immunoglobulins isolated from myeloma patients with bone disease promote osteoclast differentiation when added to human preosteoclasts in vitro, whereas immunoglobulins from patients without bone disease do not. This effect was primarily mediated by immune complexes or aggregates. The function and aggregation behavior of immunoglobulins are partly determined by differential glycosylation of the immunoglobulin-Fc part. Glycosylation analyses revealed that patients with bone disease had significantly less galactose on immunoglobulin G (IgG) compared with patients without bone disease and also less sialic acid on IgG compared with healthy persons. Importantly, we also observed a significant reduction of IgG sialylation in serum of patients upon onset of bone disease. In the 5TGM1 mouse myeloma model, we found decreased numbers of lesions and decreased CTX-1 levels, a marker for osteoclast activity, in mice treated with a sialic acid precursor, N-acetylmannosamine (ManNAc). ManNAc treatment increased IgG-Fc sialylation in the mice. Our data support that deglycosylated immunoglobulins promote bone loss in multiple myeloma and that altering IgG glycosylation may be a therapeutic strategy to reduce bone loss.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1568-1568 ◽  
Author(s):  
Rajni Sinha ◽  
Ebenezer David ◽  
Emily Zeilter ◽  
Claire Torre ◽  
Jonathan L. Kaufman ◽  
...  

Abstract Introduction Multiple myeloma is a clonal plasma cell malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Most patients are incurable with the current treatment modalities. Clearly novel agents are needed to improve the outcome for patients with myeloma. We have previously shown that the combination of bortezomib and tipifarnib results in synergistic myeloma cell death. This increase in apoptosis is associated with down regulation of phosphorylated AKT, a potent anti-apoptotic signaling molecule. Therefore, agents that target AKT represent ideal compounds for further study in myeloma. Perifosine is a novel, oral bioavailable alkylphospholipid. Perifosine has displayed apoptotic and antipropliferative activity in vitro and in vivo in several human cancer models including leukemia. Perifosine exerts its actions by interfering with key intracellular pathways including AKT, MAPK, JNK, p21waf1. Our hypothesis is that targeting AKT via multiple upstream pathways will result in increased myeloma cell apoptosis. Therefore, we assessed the effects of single agent perifosine with and without tipifarnib on multiple myeloma cell lines. Method The myeloma cell line RPMI8226 was used. Cell viability and proliferation were assessed using MTT assays. Cells were incubated with increasing concentrations of both agents alone and in combination. Cell proliferation was assayed at 24, 48 and 72 hours. Western blots were then carried out to evaluate the effects of the intracellular protein PDK1, one of the critical signaling molecules that phosphorylates and activates AKT. Results As we and others have previously shown, tipifarnib at concentrations that can be achieved clinically is associated with minimal cytotoxicity. At 5 μM, tipifarnib decrease proliferation by only 20%. In contrast, there is a potent dose response effect of single agent perifosine (Fig. 1). These results were apparent as early as 24 hours. When tipifarnib at 5 μM is used in combination with a subtherapeutic dose of perifosine (2 μM), there is a marked decrease in cell proliferation (Fig. 2). In addition, combination therapy resulted in a reduction in the phosphorylated form of PDK1, a critical finding that was not seen with either drug alone. Conclusion Combination therapy with tipifarnib and perifosine results in less cell proliferation compared to either agent used alone in the RPMI8226 myeloma cell line. The dosages employed in these in-vitro studies are lower than those used in previously published data and are clinically achievable. Studies targeting other cell lines including MM.1R, MM.1S, and U266 are in progress. Analysis of AKT, Caspase 3, 8 and 9 are being explored to help delineate the mechanism of this novel combination. The goal is to develop further effective treatment options for patients with myeloma. Figure 1 Figure 1. Figure 2 Figure 2.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4481-4481
Author(s):  
Denise Toscani ◽  
Martina Chiu ◽  
Giuseppe Taurino ◽  
Emanuela Vicario ◽  
Valentina Marchica ◽  
...  

Abstract Multiple myeloma (MM) cells are characterized by tight dependence on the bone marrow (BM) microenvironment that exerts a permissive role on cell growth and survival. In turn, MM cells markedly modify their microenvironment leading, in particular, to the development of osteolytic bone lesions. Recently, we demonstrated that metabolic alterations is a major feature of MM cells showing that BM plasma of MM patients is characterized by lower levels of Glutamine (Gln) and higher levels of Glutamate (Glu) and ammonium when compared with patients with smoldering MM (SMM) and Monoclonal Gammopathy of Uncertain Significance (MGUS). In the majority of MM patients MM cells are Gln-addicted since they strictly depend on extracellular Gln, do not express Glutamine Synthetase (GS), the enzyme that synthetizes Gln from Glu and ammonium, and are endowed with high levels of the Gln transporter ASCT2. Based on this evidence, we have hypothesized that the peculiar Gln metabolism of MM cells may have a significant impact on the relationship with the bone microenvironment and contribute to the development of osteolytic lesions. We firstly characterized a panel of human MM cell lines (HMCLs) for their GS expression and response to decreasing levels of Gln. The majority of HMCLs, which did not express GS, consumed large amounts of extracellular Gln but secreted nearly half of the amino acid as Glu. Two HMCLs, MM1.S and U266, with a sizable GS expression, were less sensitive to Gln deprivation and secreted less Glu in the extracellular space compared with GS-negative HMCLs. Consistently, the activity of the Glu exchanger x-CT (the product of SLC7A11 gene) was lower in GS-positive than in GS-negative cells. The response to Gln starvation was then studied in mesenchymal stromal cell line (MSC), as well as in osteoblastic (HOBIT) and pre-osteocytic cells (HOB-01). HOBIT and HOB-01 were more sensitive to Gln depletion than MSC. Indeed, while MSC showed a low EC50 for Gln (0.064mM), which is 10-times lower than the physiological blood Gln concentration (around 0.6 mM), the EC50 values of HOBIT and HOB-01 cells were 0.250 mM and 0.297mM, respectively. Furthermore, L-methionine sulfoximine (MSO), an irreversible inhibitor of GS, emphasized the effects of Gln deprivation on all the cell lines tested. Indeed, Gln deprivation enhanced the expression of GS, suggesting that both stromal and osteoblastic cells exploit the enzyme to counteract Gln deprivation. On the basis of these data, we assessed the effects of Gln and Glu on osteogenic differentiation by incubating MSC, either immortalized or primary, with an osteogenic medium containing different concentrations of Gln and Glu. After 2 weeks, compared with cells differentiated in high Gln/high Glu conditions, MSC incubated in the presence of decreased Gln and increased Glu showed lower osteogenic ability, as assessed by real time PCR and ALP staining. Lastly, MSC co-cultured for 72 hours with GS-negative, but not with GS-positive HMCLs, showed reduced viability and increased GS expression. Lastly, to put in a translational perspective these in vitro observations, we analyzed the BM plasma levels of Gln and Glu in a cohort of 41 patients with newly diagnosed MM, including 9 smoldering MM (SMM) and 32 active MM patients (20 of them with osteolytic bone disease, 12 of them without bone disease). All 20 osteolytic MM patients had more than three osteolytic lesions. We found that MM patients had lower Gln levels and higher Glu levels than SMM patients. Moreover, when compared with MM patients without bone disease, MM patients with bone disease showed lower levels of Gln and higher levels of Glu. The results of these analyses are being continuously updated increasing the number of samples tested. Overall, these results indicate that MM cells are able to create a low-Gln/high-Glu bone marrow microenvironment that sustains GS expression in bone cells and impairs their differentiation and viability. Thus, the peculiar metabolic milieu in the MM bone microenvironment affects the relationship between neoplastic and bone cells and may contribute to the development of osteolytic bone disease in MM patients. Disclosures Aversa: Astellas: Honoraria; Merck: Honoraria; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Basilea: Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees. Giuliani:Takeda Pharmaceutical Co: Research Funding; Celgene Italy: Other: Avisory Board, Research Funding; Janssen Pharmaceutica: Other: Avisory Board, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2065-2065
Author(s):  
Marita Westhrin ◽  
Siv Helen Moen ◽  
Toril Holien ◽  
Oddrun Elise Olsen ◽  
Anne Kærsgaard Mylin ◽  
...  

Abstract Introduction Growth differentiation factor 15 (GDF15) is a multifunctional growth factor of the transforming growth factor beta (TGFbeta) family that plays a complex role in several types of cancers. In multiple myeloma, GDF15 was recently shown to enhance the tumor-initiating and self-renewal potential of the cancer cells (Tanno et al, Blood 2014). Moreover, blood and bone marrow plasma levels of GDF15 are elevated in myeloma patients compared with healthy persons, and high serum levels are associated with a poor prognosis (Corre et al, Cancer Research 2012). GDF15 seems important for bone remodeling during hypoxia (Hino et al, JBMR 2012), and one study proposed GDF15 to increase osteoclast activation in prostate cancer metastasizing to bone (Wakchoure et al, Prostate 2009). Whether GDF15 plays a role in the bone disease of multiple myeloma is not well characterized. Aim Our aim was to investigate whether high GDF15 serum levels are associated with multiple myeloma bone disease and to characterize the effect of GDF15 on osteoclast differentiation in vitro. Methods GDF15 was measured in serum samples obtained at diagnosis from 138 myeloma patients and 58 age and sex-matched healthy controls. The patient serum samples were collected for the Nordic Myeloma Study Group during a randomized phase 3 clinical trial which compared the effect of two different doses of pamidronate on bone. The bone disease was therefore particularly well-characterized in this study (Gimsing et al, Lancet Oncol 2010). Peripheral blood mononuclear cells (PBMC) isolated from buffy coats were cultured in osteoclast medium (a-MEM with human serum (20%), M-CSF (30ng/ml) and RANKL (50ng/ml)) for up to 14 days with or without GDF15. Purchased pre-osteoclasts (Lonza Inc.) were cultured in purchased bullet kit (OC medium with M-CSF (33ng/ml) and RANKL (66ng/ml)) for 7 days with or without GDF15. Cells positive for tartrate resistant acidic phosphatase (TRAP) staining and with more than two nuclei were counted as osteoclasts. Results GDF15 was significantly higher in serum obtained from myeloma patients (median 1.08 ng/ml, range 27.91) compared with healthy controls (median 0.46 ng/ml, range 1.66, Independent samples Kruskal-Wallis test p< 0.0001). Moreover, serum GDF15 was elevated in patients with a more advanced osteolytic bone disease (n= 51, median 1.44 ng/ml, range 6.48) as compared to patients without osteolytic lesions (n= 16, median 0.84 ng/ml, range 10.62) at inclusion (p<0.05). The difference between serum GDF15 in patients with limited bone disease at inclusion (n=51, median 1.07 ng/ml, range 6.84) and patients with no bone disease at baseline was not significantly different. In vitro, addition of GDF15 (0-100 ng/ml) to osteoclast precursors or PBMC increased numbers of multi-nucleated TRAP positive cells in a dose dependent manner (n=3, O ng/ml GDF15 mean 25.7, SEM 5.9, 2 ng/ml GDF15 mean 29.7, SEM 4.3, 20 ng/ml GDF15 mean 38.7, SEM 4.9, 50 ng/ml GDF15 mean 53.3, SEM 11.6, 100 ng/ml GDF15 mean 78.7 SEM 7.8). OPG inhibited the pro-osteoclastogenic activity of GDF15 inferring that the effect is mediated by RANKL. Hence, GDF15 increases osteoclast differentiation. Conclusion Serum GDF15 is elevated in myeloma patients with advanced osteolytic bone disease compared to patients with no lesions. GDF15 increases osteoclast differentiation in vitro. Hence, GDF15 could play a role in regulating bone remodeling in myeloma patients. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3877
Author(s):  
Aristea-Maria Papanota ◽  
Panagiotis Tsiakanikas ◽  
Christos K. Kontos ◽  
Panagiotis Malandrakis ◽  
Christine-Ivy Liacos ◽  
...  

Background: Multiple myeloma bone disease (MMBD) constitutes a common and severe complication of multiple myeloma (MM), impacting the quality of life and survival. We evaluated the clinical value of a panel of 19 miRNAs associated with osteoporosis in MMBD. Methods: miRNAs were isolated from the plasma of 62 newly diagnosed MM patients with or without MMBD. First-strand cDNA was synthesized, and relative quantification was performed using qPCR. Lastly, we carried out extensive biostatistical analysis. Results: Circulating levels of let-7b-5p, miR-143-3p, miR-17-5p, miR-214-3p, and miR-335-5p were significantly higher in the blood plasma of MM patients with MMBD compared to those without. Receiver operating characteristic curve and logistic regression analyses showed that these miRNAs could accurately predict MMBD. Furthermore, a standalone multi-miRNA–based logistic regression model exhibited the best predictive potential regarding MMBD. Two of those miRNAs also have a prognostic role in MM since survival analysis indicated that lower circulating levels of both let-7b-5p and miR-335-5p were associated with significantly worse progression-free survival, independently of the established prognostic factors. Conclusions: Our study proposes a miRNA signature to facilitate MMBD diagnosis, especially in ambiguous cases. Moreover, we provide evidence of the prognostic role of let-7b-5p and miR-335-5p as non-invasive prognostic biomarkers in MM.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


Author(s):  
Beatriz Gamez

Gámez B., Morris EV., Olechnowicz S., Sowman, A., Turner, C. and Edwards CM.   Multiple myeloma (MM) is a fatal malignancy characterized by an expansion of malignant plasma cells in the bone marrow (BM) and associated with osteolytic bone disease. MM is preceded by the benign condition, monoclonal gammopathy of undetermined significance (MGUS). Understanding MGUS progression and development of MM bone disease is key for patient management. We and others have previously demonstrated that diet-induced obesity promotes myeloma progression, but the mechanisms underlying this remain unknown. The aim of the current study was to determine the effect of dietary cholesterol on MM development. A 2% cholesterol diet was used to increase circulating LDL in mice. Mice were randomly distributed to either a) cholesterol diet 4 weeks prior to 5TGM1 MM inoculation (pretreatment) or b) cholesterol diet 4 weeks prior to MM inoculation and continued for the entire experiment (continuous). Mice on the continuous cholesterol diet had increased tumour burden, associated with an increase in lipid droplet content of MM cells. No differences in tumour burden were seen in those mice where cholesterol diet was halted at time of MM inoculation. In vitro, myeloma cells cultured with delipidated FBS had a 50% reduction in viability after 72 hours. Rich cholesterol content lipoproteins (LDL) but not VLDL could restore MM cell viability, suggesting that cholesterol is responsible for this lipid-depletion effect. Taken together, our results show that high cholesterol promotes myeloma and results in a higher lipid content in myeloma cells, ultimately increasing BM tumour burden. Pretreatment with a cholesterol diet did not alter disease progression suggesting a direct pro-tumourigenic effect of cholesterol. These results demonstrate both the detrimental effect of cholesterol on myeloma progression and the potential for dietary intervention approaches.


Sign in / Sign up

Export Citation Format

Share Document