scholarly journals Effects of Aqueous Dispersions of C60, C70 and Gd@C82 Fullerenes on Genes Involved in Oxidative Stress and Anti-Inflammatory Pathways

2021 ◽  
Vol 22 (11) ◽  
pp. 6130
Author(s):  
Elena V. Proskurnina ◽  
Ivan V. Mikheev ◽  
Ekaterina A. Savinova ◽  
Elizaveta S. Ershova ◽  
Natalia N. Veiko ◽  
...  

Background: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory responses are of particular importance. Methods: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 h. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. Results & conclusion: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in reactive oxygen species (ROS) homeostasis. Low and high concentrations of aqueous fullerene dispersions (AFD) have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both “prooxidant” and “antioxidant” effects but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced “prooxidant” properties.

Author(s):  
Elena V. Proskurnina ◽  
Ivan V. Mikheev ◽  
Ekaterina A. Savinova ◽  
Elizaveta S. Ershova ◽  
Natalia N. Veiko ◽  
...  

Background: Fullerenes and metallofullerenes can be considered promising nanopharmaceuticals themselves and as a basis for chemical modification. As reactive oxygen species homeostasis plays a vital role in cells, the study of their effect on genes involved in oxidative stress and anti-inflammatory response is of particular importance. Methods: Human fetal lung fibroblasts were incubated with aqueous dispersions of C60, C70, and Gd@C82 in concentrations of 5 nM and 1.5 µM for 1, 3, 24, and 72 hours. Cell viability, intracellular ROS, NOX4, NFκB, PRAR-γ, NRF2, heme oxygenase 1, and NAD(P)H quinone dehydrogenase 1 expression have been studied. Results & conclusion: The aqueous dispersions of C60, C70, and Gd@C82 fullerenes are active participants in ROS homeostasis. Low and high concentrations of AFDs have similar effects. C70 was the most inert substance, C60 was the most active substance. All AFDs have both a “prooxidant” and “antioxidant” effect, but with a different balance. Gd@C82 was a substance with more pronounced antioxidant and anti-inflammatory properties, while C70 had more pronounced “prooxidant” properties.


2021 ◽  
Vol 11 (24) ◽  
pp. 11715
Author(s):  
Se-Yun Cheon ◽  
Hyun-Ae Kang ◽  
Bo-Ram Jin ◽  
Hyo-Jung Kim ◽  
Yea-Jin Park ◽  
...  

The genus Epilobium consists of approximately 200 species that are distributed worldwide. Some of these herbs have been used for the treatment of diarrhea, infection, irritation, and other disorders associated with inflammation. Unlike that of other Epilobium species, there is little scientific understanding of the pharmacological effect of Epilobium amurense subsp. cephalostigma (Hausskn.) C. J. Chen, Hoch & P. H. Raven. In this study, we demonstrated the anti-inflammatory and antioxidative properties of an E. amurense 95% ethanol extract (EACEE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and observed the underlying mechanism of this effect. We measured the productions of nitric oxide (NO) and reactive oxygen species, and examined the actions of EACEE on transcription factors in the macrophages. EACEE reduced NO production and inducible nitric oxide synthase protein levels via the inhibition of the nuclear factor (NF)-κB pathway. Additionally, EACEE suppressed redundant reactive oxygen species production and regulated nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. Furthermore, EACEE significantly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). Overall, these results indicate that EACEE exerts anti-inflammatory and antioxidant effects via the activation of Nrf2/HO-1 and inhibition of NF-κB/p38 MAPK signaling.


2019 ◽  
Vol 6 (1) ◽  
pp. 64-76 ◽  
Author(s):  
Pranay Wal ◽  
Nikita Saraswat ◽  
Rashmi Saxena Pal ◽  
Ankita Wal ◽  
Madhvi Chaubey

Background: Curcumin is an active constituent of Curcuma longa, which belongs to Zingiberaceae family. It is derived from the Rhizome of a perennial plant having molecular formula C21H20O6 and chemically it is (1, 7- bis (4- hydroxy - 3 methoxyphenyl) -1, 6 - heptadine - 3, 5 - diene), also known as diferuloylmethane. Curcumin has been extensively used as a herbal constituent for curing several diseases and is scientifically proven to show major effects as an anti-inflammatory agent. Objective: Inflammation is an important factor for numerous diseases including diabetes neuropathy, cancer, asthma, arthritis, and other diseases. Prophylaxis of inflammatory diseases through synthetic medications tends to have major toxicity and side effects on a large number of population. The foremost aim of this review paper is to assess the natural anti-inflammatory effect of curcumin, source, and mechanism of action, potential therapeutic effect and models associated. Additionally, this paper aims to scrutinize inflammation, sources of reactive oxygen species, and pathways of reactive oxygen species generation and potential side effects of curcumin. Methods: Selection of data has been done by studying the combination of research and review papers from different databases like PubMed, Medline and Web of science from the year 1985- 2018 by using search keywords like “curcumin”, “anti-inflammatory”, “ROS”, “Curcuma longa”, “medicinal uses of curcumin”, “assessing parameters”, “inflammation”, “anti-oxidant” Results: On the basis of our interpretation, we have concluded that curcumin has potential therapeutic effects in different inflammatory diseases, it inhibits the inflammatory mediators, oxidation processes, and oxidative stress and has no severe toxicity on animals and humans. Conclusion: Oxidative stress is a major cause of inflammation and curcumin has a good potential for blocking it. Curcumin is also easily accessible herbal source and should be consumed in the form of food, antioxidant, anti-inflammatory agents and further observation should be done on its therapeutic parameters, risk factors, and toxicity studies and oral viability.


2021 ◽  
Author(s):  
Se-Yun Cheon ◽  
Hyun-Ae Kang ◽  
Bo-Ram Jin ◽  
Yea-Jin Park ◽  
Hyo-Jung Kim ◽  
...  

Abstract Background: The genus Epilobium consists of approximately 200 species that are distributed worldwide. Some of these herbs have been used for the treatment of diarrhea, infection, irritation, and other disorders associated with inflammation. Unlike that of other Epilobium species, there is little scientific understanding of the pharmacological effect of Epilobium amurense subsp. cephalostigma (Hausskn.) C. J. Chen, Hoch & P. H. Raven. Methods: In this study, we demonstrated the anti-inflammatory and anti-oxidative properties of an E. amurense 95% ethanol extract (EACEE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and observed the underlying mechanism of this effect. We measured the productions of nitric oxide (NO) and reactive oxygen species, and examined the actions of EACEE on transcription factors in the macrophages.Results: EACEE reduced NO production and inducible nitric oxide synthase protein levels via the inhibition of the nuclear factor (NF)-κB pathway. Additionally, EACEE suppressed redundant reactive oxygen species production and regulated nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. Furthermore, EACEE significantly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). Conclusions: Overall, these results indicate that EACEE exerts anti-inflammatory and antioxidant effects via the activation of Nrf2/HO-1 and inhibition of NF-κB/p38 MAPK signaling.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Amnah M. Alshangiti ◽  
Eszter Tuboly ◽  
Shane V. Hegarty ◽  
Cathal M. McCarthy ◽  
Aideen M. Sullivan ◽  
...  

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4138
Author(s):  
Yeon-Jin Cho ◽  
Sun-Hye Choi ◽  
Ra-Mi Lee ◽  
Han-Sung Cho ◽  
Hyewhon Rhim ◽  
...  

Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


Sign in / Sign up

Export Citation Format

Share Document