scholarly journals A pH-Sensitive Polymeric Micellar System Based on Chitosan Derivative for Efficient Delivery of Paclitaxel

2021 ◽  
Vol 22 (13) ◽  
pp. 6659
Author(s):  
Yang Han ◽  
Jieyi Pan ◽  
Na Liang ◽  
Xianfeng Gong ◽  
Shaoping Sun

In this study, an amphiphilic conjugate based on mPEG and cholesterol-modified chitosan with hydrazone bonds in the molecules (mPEG-CS-Hz-CH) was successfully synthesized. Using the polymer as the carrier, the paclitaxel (PTX)-loaded mPEG-CS-Hz-CH micelles were prepared by an ultrasonic probe method. The mean particle size and zeta potential of the optimized PTX-loaded micelles were 146 ± 4 nm and +21.7 ± 0.7 mV, respectively. An in vitro drug release study indicated that the PTX-loaded mPEG-CS-Hz-CH micelles were stable under normal physiological conditions (pH 7.4), whereas rapid drug release was observed in the simulated tumor intracellular microenvironment (pH 5.0). An in vitro cytotoxicity study demonstrated the non-toxicity of the polymer itself, and the PTX-loaded micelles exhibited superior cytotoxicity and significant selectivity on tumor cells. An in vivo antitumor efficacy study further confirmed that the PTX-loaded micelles could improve the therapeutic efficacy of PTX and reduce the side effects. All these results suggested that the mPEG-CS-Hz-CH micelles might be promising pH-sensitive nanocarriers for PTX delivery.

2009 ◽  
Vol 5 (4) ◽  
pp. 449-456 ◽  
Author(s):  
Fang Zhi-gang ◽  
Pan Ping ◽  
Yang Zhi-qiang ◽  
Chen Ya-gen ◽  
Zhang Jian-kang ◽  
...  

Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Meenakshi Srinivas Iyer ◽  
Anil Kumar Gujjari ◽  
Sathishbabu Paranthaman ◽  
Amr Selim Abu Lila ◽  
Khaled Almansour ◽  
...  

Denture stomatitis (DS), usually caused by Candida infection, is one of the common denture-related complications in patients wearing dentures. Clove and cinnamon oils have been acknowledged for their anti-inflammatory, antimicrobial activity, and antifungal effects in the oral cavity. The aim of this study, therefore, was to prepare clove/cinnamon oils-loaded emulgel and to assess its efficacy in treating Candida albicans-associated denture stomatitis. Central composite design was adopted to formulate and optimize clove/cinnamon extracts-loaded emulgel. The formulated preparations were assessed for their physical appearance, particle size, viscosity, spreadability, and in-vitro drug release. In addition, in-vivo therapeutic experiments were conducted on 42 patients with denture stomatitis. The prepared emulgel formulations showed good physical characteristics with efficient drug release within 3 h. In addition, in-vivo antifungal studies revealed that the optimized formula significantly (p < 0.001) reduced Candida colony counts from the denture surface, compared to commercially available gel (240.38 ± 27.20 vs. 398.19 ± 66.73 CFU/mL, respectively). Furthermore, the optimized formula and succeeded in alleviating denture stomatitis-related inflammation with a better clinical cure rate compared to commercially available gel Collectively, herbal extracts-loaded emulgel might be considered an evolution of polyherbal formulations and might represent a promising alternative to the existing allopathic drugs for the treatment of denture stomatitis, with better taste acceptability and no side effects.


Author(s):  
KUMAR BABU PASUPULETI ◽  
VENKATACHALAM A. ◽  
BHASKAR REDDY KESAVAN

Objective: This study is to formulate Nebivolol into a Pulsatile liquid, solid composite compression coated tablet, which will delay the release of the drug in early morning hypertension conditions. Methods: The liquid, solid composite tablet was formulated and compressed with the ethylcellulose coating polymer. The percent in vitro drug release of the liquid solid composite compressed tablet was tested. Based on disintegration time and wetting time, the LCS2, LCS3, LSC6, LCS7 and LCS12 formulations were found to be the optimized solid-liquid compacts fast-dissolving core tablet formulations, which may be excellent candidates for further coating with polymer to transfer into press coated pulsatile tablet formulations. Coating the core tablet with varying ethyl cellulose concentrations resulted in five different formulations of the pulsatile press-coated tablet (CT1, CT2, CT3, CT4, CT5). In vitro drug release, in vitro release, kinetic studies, in vivo pharmacokinetic and stability tests were all performed for the prepared pulsatile press coated tablet. Results: CT3 tablets are coated with ethyl cellulose polymer, which shows maximum controlled drug release from the core tablet i.e. 96.34±1.2% at 8th h. It shows there was an efficient delay in drug release form core tablet i.e. up to 3 h, followed by the maximum amount of drug release of 96.34±2.4 at 8h. Which shows the core drug will be more efficiently protected from the gastric acid environment 1.2 pH, duodenal environment 4.0 pH and release drug only in the small intestine. Conclusion: According to the findings, CT3 Pulsatile press-coated tablet increased the bioavailability of Nebivolol by 3.11 percent.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Sign in / Sign up

Export Citation Format

Share Document