scholarly journals Regulation of Melatonin and Neurotransmission in Alzheimer’s Disease

2021 ◽  
Vol 22 (13) ◽  
pp. 6841
Author(s):  
Jaydeep Roy ◽  
Ka Chun Tsui ◽  
Jonah Ng ◽  
Man-Lung Fung ◽  
Lee Wei Lim

Alzheimer’s disease is a neurodegenerative disorder associated with age, and is characterized by pathological markers such as amyloid-beta plaques and neurofibrillary tangles. Symptoms of AD include cognitive impairments, anxiety and depression. It has also been shown that individuals with AD have impaired neurotransmission, which may result from the accumulation of amyloid plaques and neurofibrillary tangles. Preclinical studies showed that melatonin, a monoaminergic neurotransmitter released from the pineal gland, is able to ameliorate AD pathologies and restore cognitive impairments. Theoretically, inhibition of the pathological progression of AD by melatonin treatment should also restore the impaired neurotransmission. This review aims to explore the impact of AD on neurotransmission, and whether and how melatonin can enhance neurotransmission via improving AD pathology.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Donna M. Wilcock

Alzheimer's disease (AD) is a complex, neurodegenerative disorder characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain. Glial cells, particularly microglial cells, react to the presence of the amyloid plaques and neurofibrillary tangles producing an inflammatory response. While once considered immunologically privileged due to the blood-brain barrier, it is now understood that the glial cells of the brain are capable of complex inflammatory responses. This paper will discuss the published literature regarding the diverse roles of neuroinflammation in the modulation of AD pathologies. These data will then be related to the well-characterized macrophage phenotypes. The conclusion is that the glial cells of the brain are capable of a host of macrophage responses, termed M1, M2a, M2b, and M2c. The relationship between these states and AD pathologies remains relatively understudied, yet published data using various inflammatory stimuli provides some insight. It appears that an M1-type response lowers amyloid load but exacerbates neurofibrillary tangle pathology. In contrast, M2a is accompanied by elevated amyloid load and appears to ameliorate, somewhat, neurofibrillary pathology. Overall, it is clear that more focused, cause-effect studies need to be performed to better establish how each inflammatory state can modulate the pathologies of AD.


2020 ◽  
Vol 20 (26) ◽  
pp. 2380-2390 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Abdullah Al Mamun ◽  
Md. Ataur Rahman ◽  
Tapan Behl ◽  
Asma Perveen ◽  
...  

Objective: Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. Summary: Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. Conclusion: Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna A. Lauer ◽  
Daniel Janitschke ◽  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Cornel M. Bachmann ◽  
...  

AbstractAlzheimer’s disease (AD) is a very frequent neurodegenerative disorder characterized by an accumulation of amyloid-β (Aβ). Acitretin, a retinoid-derivative and approved treatment for Psoriasis vulgaris, increases non-amyloidogenic Amyloid-Precursor-Protein-(APP)-processing, prevents Aβ-production and elicits cognitive improvement in AD mouse models. As an unintended side effect, acitretin could result in hyperlipidemia. Here, we analyzed the impact of acitretin on the lipidome in brain and liver tissue in the 5xFAD mouse-model. In line with literature, triglycerides were increased in liver accompanied by increased PCaa, plasmalogens and acyl-carnitines, whereas SM-species were decreased. In brain, these effects were partially enhanced or similar but also inverted. While for SM and plasmalogens similar effects were found, PCaa, TAG and acyl-carnitines showed an inverse effect in both tissues. Our findings emphasize, that potential pharmaceuticals to treat AD should be carefully monitored with respect to lipid-homeostasis because APP-processing itself modulates lipid-metabolism and medication might result in further and unexpected changes. Moreover, deducing effects of brain lipid-homeostasis from results obtained for other tissues should be considered cautiously. With respect to acitretin, the increase in brain plasmalogens might display a further positive probability in AD-treatment, while other results, such as decreased SM, indicate the need of medical surveillance for treated patients.


2021 ◽  
Vol 17 (12) ◽  
pp. 1072-1087
Author(s):  
Alexis S. Huang ◽  
Benjamin C.K. Tong ◽  
Aston J. Wu ◽  
Xiaotong Chen ◽  
Sravan G. Sreenivasmurthy ◽  
...  

: Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Although the pathological hallmarks of AD have been identified, the derived therapies cannot effectively slow down or stop disease progression; hence, it is likely that other pathogenic mechanisms are involved in AD pathogenesis. Intracellular calcium (Ca2+) dyshomeostasis has been consistently observed in AD patients and numerous AD models and may emerge prior to the development of amyloid plaques and neurofibrillary tangles. Thus, intracellular Ca2+ disruptions are believed to play an important role in AD development and could serve as promising therapeutic intervention targets. : One of the disrupted intracellular Ca2+ signaling pathways manifested in AD is attenuated storeoperated Ca2+ entry (SOCE). SOCE is an extracellular Ca2+ entry mechanism mainly triggered by intracellular Ca2+ store depletion. Maintaining normal SOCE function not only provides a means for the cell to replenish ER Ca2+ stores but also serves as a cellular signal that maintains normal neuronal functions, including excitability, neurogenesis, neurotransmission, synaptic plasticity, and gene expression. However, normal SOCE function is diminished in AD, resulting in disrupted neuronal spine stability and synaptic plasticity and the promotion of amyloidogenesis. Mounting evidence suggests that rectifying diminished SOCE in neurons may intervene with the progression of AD. In this review, the mechanisms of SOCE disruption and the associated pathogenic impacts on AD will be discussed. We will also highlight the potential therapeutic targets or approaches that may help ameliorate SOCE deficits for AD treatment.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3082
Author(s):  
M. Victoria Moreno-Arribas ◽  
Begoña Bartolomé ◽  
José L. Peñalvo ◽  
Patricia Pérez-Matute ◽  
Maria José Motilva

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual’s oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.


Gut ◽  
2019 ◽  
Vol 69 (2) ◽  
pp. 283-294 ◽  
Author(s):  
Min-Soo Kim ◽  
Yoonhee Kim ◽  
Hyunjung Choi ◽  
Woojin Kim ◽  
Sumyung Park ◽  
...  

ObjectiveCerebral amyloidosis and severe tauopathy in the brain are key pathological features of Alzheimer’s disease (AD). Despite a strong influence of the intestinal microbiota on AD, the causal relationship between the gut microbiota and AD pathophysiology is still elusive.DesignUsing a recently developed AD-like pathology with amyloid and neurofibrillary tangles (ADLPAPT) transgenic mouse model of AD, which shows amyloid plaques, neurofibrillary tangles and reactive gliosis in their brains along with memory deficits, we examined the impact of the gut microbiota on AD pathogenesis.ResultsComposition of the gut microbiota in ADLPAPT mice differed from that of healthy wild-type (WT) mice. Besides, ADLPAPT mice showed a loss of epithelial barrier integrity and chronic intestinal and systemic inflammation. Both frequent transfer and transplantation of the faecal microbiota from WT mice into ADLPAPT mice ameliorated the formation of amyloid β plaques and neurofibrillary tangles, glial reactivity and cognitive impairment. Additionally, the faecal microbiota transfer reversed abnormalities in the colonic expression of genes related to intestinal macrophage activity and the circulating blood inflammatory monocytes in the ADLPAPT recipient mice.ConclusionThese results indicate that microbiota-mediated intestinal and systemic immune aberrations contribute to the pathogenesis of AD in ADLPAPT mice, providing new insights into the relationship between the gut (colonic gene expression, gut permeability), blood (blood immune cell population) and brain (pathology) axis and AD (memory deficits). Thus, restoring gut microbial homeostasis may have beneficial effects on AD treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Troy T. Rohn

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by a progressive loss of memory and cognitive skills. Although much attention has been devoted concerning the contribution of the microscopic lesions, senile plaques, and neurofibrillary tangles to the disease process, inflammation has long been suspected to play a major role in the etiology of AD. Recently, a novel variant in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has been identified that has refocused the spotlight back onto inflammation as a major contributing factor in AD. Variants in TREM2 triple one's risk of developing late-onset AD. TREM2 is expressed on microglial cells, the resident macrophages in the CNS, and functions to stimulate phagocytosis on one hand and to suppress cytokine production and inflammation on the other hand. The purpose of this paper is to discuss these recent developments including the potential role that TREM2 normally plays and how loss of function may contribute to AD pathogenesis by enhancing oxidative stress and inflammation within the CNS. In this context, an overview of the pathways linking beta-amyloid, neurofibrillary tangles (NFTs), oxidative stress, and inflammation will be discussed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Elisa Canepa ◽  
Silvia Fossati

Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most prevalent cause of dementia. The main cerebral histological hallmarks are represented by parenchymal insoluble deposits of amyloid beta (Aβ plaques) and neurofibrillary tangles (NFT), intracellular filamentous inclusions of tau, a microtubule-associated protein. It is well-established that cerebrovascular dysfunction is an early feature of AD pathology, but the detrimental mechanisms leading to blood vessel impairment and the associated neurovascular deregulation are not fully understood. In 90% of AD cases, Aβ deposition around the brain vasculature, known as cerebral amyloid angiopathy (CAA), alters blood brain barrier (BBB) essential functions. While the effects of vascular Aβ accumulation are better documented, the scientific community has only recently started to consider the impact of tau on neurovascular pathology in AD. Emerging compelling evidence points to transmission of neuronal tau to different brain cells, including astrocytes, as well as to the release of tau into brain interstitial fluids, which may lead to perivascular neurofibrillar tau accumulation and toxicity, affecting vessel architecture, cerebral blood flow (CBF), and vascular permeability. BBB integrity and functionality may therefore be impacted by pathological tau, consequentially accelerating the progression of the disease. Tau aggregates have also been shown to induce mitochondrial damage: it is known that tau impairs mitochondrial localization, distribution and dynamics, alters ATP and reactive oxygen species production, and compromises oxidative phosphorylation systems. In light of this previous knowledge, we postulate that tau can initiate neurovascular pathology in AD through mitochondrial dysregulation. In this review, we will explore the literature investigating tau pathology contribution to the malfunction of the brain vasculature and neurovascular unit, and its association with mitochondrial alterations and caspase activation, in cellular, animal, and human studies of AD and tauopathies.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tan Sook Ling ◽  
Shanthini Chandrasegaran ◽  
Low Zhi Xuan ◽  
Tong Li Suan ◽  
Elaine Elaine ◽  
...  

Alzheimer’s disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer’s disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer’s disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer’s disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer’s disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer’s disease as well as its challenges.


Sign in / Sign up

Export Citation Format

Share Document