scholarly journals Active Targeted Nanoparticles for Delivery of Poly(ADP-ribose) Polymerase (PARP) Inhibitors: A Preliminary Review

2021 ◽  
Vol 22 (19) ◽  
pp. 10319
Author(s):  
Saman Sargazi ◽  
Mahwash Mukhtar ◽  
Abbas Rahdar ◽  
Mahmood Barani ◽  
Sadanad Pandey ◽  
...  

Nanotechnology has revolutionized novel drug delivery strategies through establishing nanoscale drug carriers, such as niosomes, liposomes, nanomicelles, dendrimers, polymeric micelles, and nanoparticles (NPs). Owing to their desirable cancer-targeting efficacy and controlled release, these nanotherapeutic modalities are broadly used in clinics to improve the efficacy of small-molecule inhibitors. Poly(ADP-ribose) polymerase (PARP) family members engage in various intracellular processes, including DNA repair, gene transcription, signal transduction, cell cycle regulation, cell division, and antioxidant response. PARP inhibitors are synthetic small-molecules that have emerged as one of the most successful innovative strategies for targeted therapy in cancer cells harboring mutations in DNA repair genes. Despite these advances, drug resistance and unwanted side effects are two significant drawbacks to using PARP inhibitors in the clinic. Recently, the development of practical nanotechnology-based drug delivery systems has tremendously improved the efficacy of PARP inhibitors. NPs can specifically accumulate in the leaky vasculature of the tumor and cancer cells and release the chemotherapeutic moiety in the tumor microenvironment. On the contrary, NPs are usually unable to permeate across the body’s normal organs and tissues; hence the toxicity is zero to none. NPs can modify the release of encapsulated drugs based on the composition of the coating substance. Delivering PARP inhibitors without modulation often leads to the toxic effect; therefore, a delivery vehicle is essential to encapsulate them. Various nanocarriers have been exploited to deliver PARP inhibitors in different cancers. Through this review, we hope to cast light on the most innovative advances in applying PARP inhibitors for therapeutic purposes.

2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 334-334 ◽  
Author(s):  
Petros Grivas ◽  
Rebecca J Nagy ◽  
Gregory Russell Pond ◽  
Sumati Gupta ◽  
Jue Wang ◽  
...  

334 Background: Cell-free ctDNA may be potentially actionable, prognostic for outcomes and evolve after therapy. We conducted a retrospective study to evaluate these issues and shed light on UC biology. Methods: Patients (pts) with advanced UC who underwent ctDNA analysis for potentially actionable alterations using Guardant360 were identified. Data were requested for prognostic factors, current and prior therapies, TTF (time to treatment failure) and overall survival (OS). A 70-gene ctDNA next generation sequencing panel from a CLIA-licensed, CAP-accredited laboratory (Guardant Health, Inc.) offers complete exon sequencing for 29 cancer genes, critical exons in 39 genes and amplifications (16 genes), fusions (6 genes) and indels (3 genes) harvested from 10 mL of peripheral blood. Alterations were reported and association of non-synonymous potentially functional alterations with outcomes and prior therapy was examined. Results: There were 217 pts with 238 samples. ctDNA was detectable in 212 (89%) samples. Median age was 62 (range 39-91). The most common recurrent somatic mutations were in TP53 (n = 122, 57%) ARID1A (n = 47, 22%), NF1 (n = 35, 16%), FGFR2, FGFR3, and BRCA1 (n = 30, 14% each), MET (n = 27, 13%), ERBB2 (n = 25, 12%), PIK3CA (n = 24, 11%), and EGFR (n = 22, 10%). Most common genes with increased copy numbers were ERBB2 (n = 19, 9%) and RAF1 (n = 18, 8%). Clinical data were available for 64 pts, of whom 38 (59%) had prior chemotherapy. FGFR1 alterations noted in 3 of those pts (5%, 2 functional, 1 amplification) were associated with shorter OS (HR 2.95, p = 0.05). Pts with prior chemotherapy showed trend towards frequent alterations in DNA repair genes (45% vs. 23%, p = 0.11). Serial ctDNA profiling of 21 pts receiving therapy revealed the clonal evolution of mutations in BRCA2, NF1 and GATA3. Conclusions: ctDNA was very frequently detected in pts with advanced UC, and alterations were similar to those previously seen in muscle-invasive UC tumor tissue. FGFR1 alterations predicted for unfavorable outcome and DNA repair gene alterations evolved commonly after chemotherapy. Drugs exploiting these targets such as FGFR1 and PARP inhibitors may warrant exploration as salvage therapy in selected pts.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16394 ◽  
Author(s):  
Veronica L. Martinez-Marignac ◽  
Amélie Rodrigue ◽  
David Davidson ◽  
Martin Couillard ◽  
Ala-Eddin Al-Moustafa ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Aysel Kalayci Yigin ◽  
Mehmet Bulent Vatan ◽  
Ramazan Akdemir ◽  
Muhammed Necati Murat Aksoy ◽  
Mehmet Akif Cakar ◽  
...  

Polymorphisms in Lys939Gln XPC gene may diminish DNA repair capacity, eventually increasing the risk of carcinogenesis. The aim of the present study was to evaluate the significance of polymorphism Lys939Gln in XPC gene in patients with mitral chordae tendinea rupture (MCTR). Twenty-one patients with MCTR and thirty-seven age and sex matched controls were enrolled in the study. Genotyping of XPC gene Lys939Gln polymorphism was carried out using polymerase chain reaction- (PCR-) restriction fragment length polymorphism (RFLP). The frequencies of the heterozygote genotype (Lys/Gln-AC) and homozygote genotype (Gln/Gln-CC) were significantly different in MCTR as compared to control group, respectively (52.4% versus 43.2%,p=0.049; 38.15% versus 16.2%,p=0.018). Homozygote variant (Gln/Gln) genotype was significantly associated with increased risk of MCTR (OR = 2.059; 95% CI: 1.097–3.863;p=0.018). Heterozygote variant (Lys/Gln) genotype was also highly significantly associated with increased risk of MCTR (OR = 1.489; 95% CI: 1.041–2.129;p=0.049). The variant allele C was found to be significantly associated with MCTR (OR = 1.481; 95% CI: 1.101–1.992;p=0.011). This study has demonstrated the association of XPC gene Lys939Gln polymorphism with MCTR, which is significantly associated with increased risk of MCTR.


2021 ◽  
Vol 28 (3) ◽  
pp. 1879-1885
Author(s):  
Maria Samara ◽  
Maria Papathanassiou ◽  
Lampros Mitrakas ◽  
George Koukoulis ◽  
Panagiotis J. Vlachostergios ◽  
...  

Single nucleotide polymorphisms (SNPs) in DNA repair genes may predispose to urothelial carcinoma of the bladder (UCB). This study focused on three specific SNPs in a population with high exposure to environmental carcinogens including tobacco and alcohol. A case-control study design was used to assess for presence of XPC PAT +/−, XRCC3 Thr241Met, and ERCC2 Lys751Gln DNA repair gene SNPs in peripheral blood from patients with UCB and healthy individuals. One hundred patients and equal number of healthy subjects were enrolled. The XPC PAT +/+ genotype was associated with a 2-fold increased risk of UCB (OR = 2.16; 95%CI: 1.14–4; p = 0.01). The −/+ and +/+ XPC PAT genotypes were more frequently present in patients with multiple versus single tumors (p = 0.01). No association was detected between ERCC2 Lys751Gln genotypes/alleles, and risk for developing UCB. Presence of the XRCC3 TT genotype (OR = 0.14; 95%CI:0.07–0.25; p < 0.01) and of the T allele overall (OR = 0.26; 95%CI:0.16–0.41; p < 0.01) conferred a protective effect against developing UCB. The XPC PAT −/+ and XRCC3 Thr241Met SNPs are associated with predisposition to UCB. The XPC PAT −/+ SNP is also an indicator of bladder tumor multiplicity, which might require a more individualized surveillance and treatment.


2014 ◽  
Vol 41 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Gustavo Martelli Palomino ◽  
Carmen L. Bassi ◽  
Isabela J. Wastowski ◽  
Danilo J. Xavier ◽  
Yara M. Lucisano-Valim ◽  
...  

Objective.Patients with systemic sclerosis (SSc) exhibit increased toxicity when exposed to genotoxic agents. In our study, we evaluated DNA damage and polymorphic sites in 2 DNA repair genes (XRCC1Arg399Gln andXRCC4Ile401Thr) in patients with SSc.Methods.A total of 177 patients were studied for DNA repair gene polymorphisms. Fifty-six of them were also evaluated for DNA damage in peripheral blood cells using the comet assay.Results.Compared to controls, the patients as a whole or stratified into major clinical variants (limited or diffuse skin involvement), irrespective of the underlying treatment schedule, exhibited increased DNA damage.XRCC1(rs: 25487) andXRCC4(rs: 28360135) allele and genotype frequencies observed in patients with SSc were not significantly different from those observed in controls; however, theXRCC1Arg399Gln allele was associated with increased DNA damage only in healthy controls and theXRCC4Ile401Thr allele was associated with increased DNA damage in both patients and controls. Further, theXRCC1Arg399Gln allele was associated with the presence of antinuclear antibody and anticentromere antibody. No association was observed between these DNA repair gene polymorphic sites and clinical features of patients with SSc.Conclusion.These results corroborate the presence of genomic instability in SSc peripheral blood cells, as evaluated by increased DNA damage, and show that polymorphic sites of theXRCC1andXRCC4DNA repair genes may differentially influence DNA damage and the development of autoantibodies.


2005 ◽  
Vol 217 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Thomas Joseph ◽  
P. Kusumakumary ◽  
Priya Chacko ◽  
Annie Abraham ◽  
M. Radhakrishna Pillai

Sign in / Sign up

Export Citation Format

Share Document