scholarly journals Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways

2021 ◽  
Vol 22 (19) ◽  
pp. 10791
Author(s):  
Ralf Kircheis

Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.

Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 17-30 ◽  
Author(s):  
O. V. Markov ◽  
N. L. Mironova ◽  
V. V. Vlasov ◽  
M. A. Zenkova

Dendritic cells (DCs) play a crucial role in the initiation and regulation of the antitumor immune response. Already , DC-based antitumor vaccines have been thoroughly explored both in animal tumor models and in clinical trials. DC-based vaccines are commonly produced from DC progenitors isolated from peripheral blood or bone marrow by culturing in the presence of cytokines, followed by loading the DCs with tumor-specific antigens, such as DNA, RNA, viral vectors, or a tumor cell lysate. However, the efficacy of DC-based vaccines remains low. Undoubtedly, a deeper understanding of the molecular mechanisms by which DCs function would allow us to enhance the antitumor efficacy of DC-based vaccines in clinical applications. This review describes the origin and major subsets of mouse and human DCs, as well as the differences between them. The cellular mechanisms of presentation and cross-presentation of exogenous antigens by DCs to T cells are described. We discuss intracellular antigen processing in DCs, cross-dressing, and the acquisition of the antigen cross-presentation function. A particular section in the review describes the mechanisms of tumor escape from immune surveillance through the suppression of DCs functions.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Adam Palanica ◽  
Jouhyun Jeon

Research indicates that mixing the first two doses of COVID-19 vaccine types (i.e., adenoviral vector and mRNA) produces potent immune responses against the coronavirus, but it is unclear how individuals may perceive these benefits, or whether there are different concerns compared to individuals who received two doses of the same vaccine. This research examines the demographic characteristics, psychological perceptions, and vaccination-related opinions and experiences of a large Canadian sample (N = 1002) who had received two initial doses of any COVID-19 vaccine combination. Participants included 791 (78.9%) who received two doses of the exact same brand and type of vaccine, 164 (16.4%) who received two doses of the same type of vaccine (i.e., either mRNA or adenoviral vector) but from different brands (e.g., Pfizer-BioNTech + Moderna), and 47 (4.7%) who received two doses from different types and brands of vaccine (e.g., Oxford-AstraZeneca + Pfizer-BioNTech). Results showed that, after the first vaccine dose, participants who received an adenoviral vector vaccine (e.g., Oxford-AstraZeneca) experienced the highest number of common side effects, and more severe levels of each side effect compared to those who received an mRNA vaccine (e.g., Pfizer-BioNTech or Moderna). After the second dose, participants who received Moderna as their second vaccine experienced the highest number of and most severe side effects, regardless of whether they received Moderna, Pfizer-BioNTech, or Oxford-AstraZeneca as their first dose. Real-world implications of these findings are discussed.


2020 ◽  
Vol 99 (6) ◽  
pp. 15-31
Author(s):  
A.A. Korenkova ◽  
◽  
E.M. Mayorova ◽  
V.V. Bahmetjev ◽  
M.V. Tretyak ◽  
...  

The new coronavirus infection has posed a major public health challenge around the world, but new data on the disease raises more questions than answers. The lack of optimal therapy is a significant problem. The article examines the molecular mechanisms of SARS-CoV-2 infection and the pathogenesis of COVID-19, special attention is paid to features of pathological processes and immune responses in children. COVID-19 leads to a wide diversity of negative outcomes, many of which can persist for at least months. Many of the consequences have yet to be identified. SARS-CoV-2 may provoke autoimmune reactions. Reinfection, herd immunity, vaccines and other prevention measures are also discussed in this review.


2020 ◽  
Vol 15 (7) ◽  
pp. 559-569 ◽  
Author(s):  
Zhen Chang ◽  
Youhan Wang ◽  
Chang Liu ◽  
Wanli Smith ◽  
Lingbo Kong

Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.


2020 ◽  
Vol 13 ◽  
Author(s):  
Sajad Fakhri ◽  
Jayanta Kumar Patra ◽  
Swagat Kumar Das ◽  
Gitishree Das ◽  
Mohammad Bagher Majnooni ◽  
...  

Background: As a major cause of morbidity and mortality, cardiovascular diseases (CVDs) are globally increasing. In spite of recent development in the management of cardiovascular complications, CVDs have remained a medical challenge. Numerous conventional drugs are used to play cardioprotective roles; however, they are associated with several side effects. Considering the rich phytochemistry and fewer side effects of herbal medicines, they have gained particular attention to develop novel herbal drugs with cardioprotective potentials. Amongst natural entities, ginger is an extensively used and well-known functional food and condiment, possessing plentiful bioactivities, like antiinflammatory, antioxidant, and antimicrobial properties in several disorders management. Objective: The current review deliberated phytochemical properties as well as the ginger/ginger constituents' biological activities and health benefits in several diseases, with particular attention to cardiovascular complications. Methods: A comprehensive research was conducted using multiple databases, including Scopus, PubMed, Medline, Web of Science, national database (Irandoc and SID), and related articles in terms of the health benefits and cardioprotective effects of ginger/ginger constituents. These data were collected from inception until August 2019. Results: In recent years, several herbal medicines were used to develop new drugs with more potency and also minor side effects. Amongst natural entities, ginger is an extensively used traditional medicine in several diseases. The crude extract, along with related pungent active constituents, is mostly attributed to heart health. The cardioprotective effects of ginger are contributed to its cardiotonic, antihypertensive, anti-hyperlipidemia, and anti-platelet effects. The signaling pathways and molecular mechanisms of ginger regarding its cardioprotective effects are also clarified. Conclusion: This study revealed the biological activities, health benefits, and cardioprotective properties of ginger/ginger constituents along with related mechanisms of action, which gave new insights to show new avenue in the treatment of CVDs.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1453
Author(s):  
Joaquín Martí-Clúa

The synthetic halogenated pyrimidine analog, 5-bromo-2′-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2′-deoxyuridine to label dividing cells.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S739-S739
Author(s):  
Allison McGeer

Abstract Background Herd immunity from pediatric pneumococcal conjugate vaccine (PCV) programs has resulted in substantial reductions in IPD due to PCV serotypes (ST). We assessed whether similar changes in ST distribution occur in non-bacteremic pneumococcal pneumonia (NBPP). Methods The Toronto Invasive Bacterial Diseases Network performs population-based surveillance for IPD and hospitalized, culture-confirmed NBPP in Toronto/Peel Region, Canada (Pop 4.5M). Patient data are collected by interview/chart review; illness associated with respiratory isolates is categorized using Musher criteria. Results Since 2002, 6627 episodes of IPD, and 7323 non-bacteremic episodes with a respiratory isolate of S. pneumoniae (2180 meeting modified Musher criteria for NBPP) have occurred in adults. Distributions of vaccine-type serotypes in IPD and NBPP pre-PCV7 (2002-2004), post-PCV7 (2006-2009) and late post-PCV13 (2014-2019) are shown in the Figure. There were no significant changes in distribution of vaccine serotype groups from 2014-2019 in IPD or NBPP. From 2014-2019, serotypes included in PCV13 and PCV20 were associated with 33% and 59% of IPD cases, and 29% and 49% of NBPP cases in adults.. Figure. distribution of serotype groups included in different pneumococcal vaccines in cases of IPD and non-bacteremic pneumonia Conclusion Eight years post routine infant PCV13 implementation, PCV13 type IPD and NBPP persists in adults. The distribution of vaccine-type strains is similar in IPD and NBPP; although non-vaccine-type strains are more common in NBPP. Disclosures Allison McGeer, MD, FRCPC, GlaxoSmithKline (Advisor or Review Panel member, Research Grant or Support)Merck (Advisor or Review Panel member, Research Grant or Support)Pfizer (Research Grant or Support)


2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.


Sign in / Sign up

Export Citation Format

Share Document