Natural Products for Regulating Macrophages M2 Polarization

2020 ◽  
Vol 15 (7) ◽  
pp. 559-569 ◽  
Author(s):  
Zhen Chang ◽  
Youhan Wang ◽  
Chang Liu ◽  
Wanli Smith ◽  
Lingbo Kong

Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Marjan Talebi ◽  
Mohsen Talebi ◽  
Tahereh Farkhondeh ◽  
Jesus Simal-Gandara ◽  
Dalia M. Kopustinskiene ◽  
...  

AbstractChrysin has been shown to exert several beneficial pharmacological activities. Chrysin has anti-cancer, anti-viral, anti-diabetic, neuroprotective, cardioprotective, hepatoprotective, and renoprotective as well as gastrointestinal, respiratory, reproductive, ocular, and skin protective effects through modulating signaling pathway involved in apoptosis, oxidative stress, and inflammation. In the current review, we discussed the emerging cellular and molecular mechanisms underlying therapeutic indications of chrysin in various cancers. Online databases comprising Scopus, PubMed, Embase, ProQuest, Science Direct, Web of Science, and the search engine Google Scholar were searched for available and eligible research articles. The search was conducted by using MeSH terms and keywords in title, abstract, and keywords. In conclusion, experimental studies indicated that chrysin could ameliorate cancers of the breast, gastrointestinal tract, liver and hepatocytes, bladder, male and female reproductive systems, choroid, respiratory tract, thyroid, skin, eye, brain, blood cells, leukemia, osteoblast, and lymph. However, more studies are needed to enhance the bioavailability of chrysin and evaluate this agent in clinical trial studies. Graphic abstract


2022 ◽  
Vol 12 ◽  
Author(s):  
Cheng Wang ◽  
Shu Dai ◽  
Lihong Gong ◽  
Ke Fu ◽  
Cheng Ma ◽  
...  

Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.


2018 ◽  
Author(s):  
Anne-Laure Mahul-Mellier ◽  
Firat Altay ◽  
Johannes Burtscher ◽  
Niran Maharjan ◽  
Nadine Ait Bouziad ◽  
...  

Although converging evidence point to alpha-synuclein (a-syn) aggregation and Lewy body (LB) formation as central events in Parkinson's disease (PD), the molecular mechanisms that regulate these processes and their role in disease pathogenesis remain poorly understood. Herein, we applied an integrative biochemical, structural and imaging approach to elucidate the sequence, molecular and cellular mechanisms that regulate LB formation in primary neurons. Our results establish that post-fibrillization C-terminal truncation mediated by calpains 1 and 2 and potentially other enzymes, plays critical roles in regulating a-syn seeding, fibrillization and orchestrates many of the events associated with LB formation and maturation. These findings combined with the abundance of a-syn truncated species in LBs and pathological a-syn aggregates have significant implications for ongoing efforts to develop therapeutic strategies based on targeting the C-terminus of a-syn or proteolytic processing of this region.


2019 ◽  
Vol 47 (04) ◽  
pp. 769-785 ◽  
Author(s):  
Jianheng Li ◽  
Jijun Hao

Tripterygium wilfordii Hook F. (TWHF), a traditional Chinese medicine, has been widely used to treat autoimmune and inflammatory diseases including rheumatoid arthritis, systemic lupus erythematosus and dermatomyositis in China. Recently, studies have demonstrated that the bioactive components of TWHF have effective therapeutic potential for neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis. In this paper, we summarize the research progress of triptolide and celastrol (the two major TWHF components) as well as their analogues in the treatment of neurodegenerative diseases. In addition, we review and discuss the molecular mechanisms and structure features of those two bioactive TWHF components, highlighting their therapeutic promise in neurodegenerative diseases.


2020 ◽  
Vol 15 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Xinliang Zhang ◽  
Ke Zhang ◽  
Youhan Wang ◽  
Rui Ma

In humans, oxidative stress is thought to be involved in the development of Parkinson's disease, Alzheimer's disease, atherosclerosis, heart failure, myocardial infarction and depression. Myricitrin, a botanical flavone, is abundantly distributed in the root bark of Myrica cerifera, Myrica esculenta, Ampelopsis grossedentata, Nymphaea lotus, Chrysobalanus icaco, and other plants. Considering the abundance of its natural sources, myricitrin is relatively easy to extract and purify. Myricitrin reportedly possesses effective anti-oxidative, anti-inflammatory, and anti-nociceptive activities, and can protect a variety of cells from in vitro and in vivo injuries. Therefore, our current review summarizes the research progress of myricitrin in cardiovascular diseases, nerve injury and anti-inflammatory, and provides new ideas for the development of myricitrin.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2830
Author(s):  
João V. S. Guerra ◽  
Marieli M. G. Dias ◽  
Anna J. V. C. Brilhante ◽  
Maiara F. Terra ◽  
Marta García-Arévalo ◽  
...  

Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Palanisamy Arulselvan ◽  
Masoumeh Tangestani Fard ◽  
Woan Sean Tan ◽  
Sivapragasam Gothai ◽  
Sharida Fakurazi ◽  
...  

Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.


2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


Author(s):  
Wang Gong ◽  
Fei Wang ◽  
Yuqing He ◽  
Blake Heath ◽  
Xin Zeng ◽  
...  

: Mesenchymal stem cell (MSC) therapy for clinical diseases associated with inflammation and tissue damage has become a progressive treatment strategy. MSCs have unique biological functions, such as homing, immune regulation, and differentiation capabilities, which provide the prerequisites for treatment of clinical diseases. Oral diseases are often associated with abnormal immune regulation and epithelial tissue damage. In this review, we summarize previous studies that use MSC therapy to treat various oral inflammatory diseases, including oral ulceration, allergic diseases, chemo/radiotherapy-induced oral mucositis, periodontitis, osteonecrosis of the jaw, Sjögren's syndrome (SS), among other similar diseases. We highlight MSC treatment as a promising approach in the management of oral inflammatory diseases, and discuss the obstacles that remain and must be overcome for MSC treatment to thrive in the future.


Sign in / Sign up

Export Citation Format

Share Document