scholarly journals Controlled Release of Doxorubicin for Targeted Chemo-Photothermal Therapy in Breast Cancer HS578T Cells Using Albumin Modified Hybrid Nanocarriers

2021 ◽  
Vol 22 (20) ◽  
pp. 11228
Author(s):  
Barbara Carrese ◽  
Chiara Cavallini ◽  
Gennaro Sanità ◽  
Paolo Armanetti ◽  
Brigida Silvestri ◽  
...  

Hybrid nanomaterials have attracted research interest owing to their intriguing properties, which may offer new diagnostic options with triggering features, able to realize a new kind of tunable nanotherapeutics. Hybrid silica/melanin nanoparticles (NPs) containing silver seeds (Me-laSil_Ag-HSA NPs) disclosed relevant photoacoustic contrast for molecular imaging. In this study we explored therapeutic function in the same nanoplatform. For this purpose, MelaSil_Ag-HSA were loaded with doxorubicin (DOX) (MelaSil_Ag-HSA@DOX) and tested to assess the efficiency of drug delivery combined with concurrent photothermal treatment. The excellent photothermal properties allowed enhanced cytotoxic activity at significantly lower doses than neat chemotherapeutic treatment. The results revealed that MelaSil_Ag-HSA@DOX is a promising platform for an integrated photothermal (PT) chemotherapy approach, reducing the efficacy concentration of the DOX and, thus, potentially limiting the several adverse side effects of the drug in in vivo treatments.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1212
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 675
Author(s):  
Chun Chu ◽  
Zhihong Bao ◽  
Meng Sun ◽  
Xiaowei Wang ◽  
Hongyan Zhang ◽  
...  

The combination of chemotherapy and phototherapy has attracted increasing attention for cancer treatment in recent years. In the current study, porous PdPt bimetallic nanoparticles (NPs) were synthesized and used as delivery carriers for the anti-cancer drug doxorubicin (DOX). DOX@PdPt NPs were modified with thiol functionalized hyaluronic acid (HA-SH) to generate DOX@PdPt@HA NPs with an average size of 105.2 ± 6.7 nm. Characterization and in vivo and in vitro assessment of anti-tumor effects of DOX@PdPt@HA NPs were further performed. The prepared DOX@PdPt@HA NPs presented a high photothermal conversion efficiency of 49.1% under the irradiation of a single 808 nm near-infrared (NIR) laser. Moreover, NIR laser irradiation-induced photothermal effect triggered the release of DOX from DOX@PdPt@HA NPs. The combined chemo-photothermal treatment of NIR-irradiated DOX@PdPt@HA NPs exerted a stronger inhibitory effect on cell viability than that of DOX or NIR-irradiated PdPt@HA NPs in mouse mammary carcinoma 4T1 cells in vitro. Further, the in vivo combination therapy, which used NIR-irradiated DOX@PdPt@HA NPs in a mouse tumor model established by subcutaneous inoculation of 4T1 cells, was demonstrated to achieve a remarkable tumor-growth inhibition in comparison with chemotherapy or photothermal therapy alone. Results of immunohistochemical staining for caspase-3 and Ki-67 indicated the increased apoptosis and decreased proliferation of tumor cells contributed to the anti-tumor effect of chemo-photothermal treatment. In addition, DOX@PdPt@HA NPs induced negligible toxicity in vivo. Hence, the developed nanoplatform demonstrates great potential for applications in photothermal therapy, drug delivery and controlled release.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wenbo Zhan ◽  
Xiao Yun Xu

The effectiveness of anticancer treatments is often hampered by the serious side effects owing to toxicity of anticancer drugs and their undesirable uptake by healthy cells in vivo. Thermosensitive liposome-mediated drug delivery has been developed as part of research efforts aimed at improving therapeutic efficacy while reducing the associated side effect. Since multiple steps are involved in the transport of drug-loaded liposomes, drug release, and its uptake, mathematical models become an indispensible tool to analyse the transport processes and predict the outcome of anticancer treatment. In this study, a computational model is developed which incorporates the key physical and biochemical processes involved in drug delivery and cellular uptake. The model has been applied to idealized tumour geometry, and comparisons are made between continuous infusion of doxorubicin and thermosensitive liposome-mediated delivery. Results show that thermosensitive liposome-mediated delivery performs better in reducing drug concentration in normal tissues, which may help lower the risk of associated side effects. Compared with direct infusion over a 2-hour period, thermosensitive liposome delivery leads to a much higher peak intracellular concentration of doxorubicin, which may increase cell killing in tumour thereby enhancing the therapeutic effect of the drug.


2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


2020 ◽  
Vol 8 (13) ◽  
pp. 2726-2737
Author(s):  
Cheng Xu ◽  
Jiaxi Xu ◽  
Yan Zheng ◽  
Qin Fang ◽  
Xiaodong Lv ◽  
...  

The mechanism of pluronic-based prodrug micelles self-assembly, drug delivery and anti-MDR in vivo.


2020 ◽  
Vol 20 (12) ◽  
pp. 7211-7230 ◽  
Author(s):  
Nour M. Al Sawaftah ◽  
Ghaleb A. Husseini

The use of ultrasound as a medical diagnostic tool began in the 1940s. Ever since, the medical applications of ultrasound have included imaging, tumor ablation, and lithotripsy; however, an ever-increasing body of literature demonstrates that ultrasound has potential in other medical applications, including targeted drug delivery. Site-specific drug delivery involves delivering drugs to diseased areas with a high degree of precision, which is particularly advantageous in cancer treatment as it would minimize the adverse side effects experienced by patients. This review addresses the ability of ultrasound to induce localized and controlled drug release from nanocarriers, namely micelles and liposomes, utilizing thermal and/or mechanical effects. The interactions of ultrasound with micelles and liposomes, the effects of the lipid composition, and ultrasound parameters on the release of encapsulated drugs are discussed. In addition, a survey of the literature detailing some in vitro and in vivo ultrasound triggered drug delivery systems is presented.


2011 ◽  
Vol 129 (3) ◽  
pp. 799-807 ◽  
Author(s):  
Uwe Güth ◽  
Mary Elizabeth Myrick ◽  
Andreas Schötzau ◽  
Nerbil Kilic ◽  
Seraina Margaretha Schmid

Drug Research ◽  
2019 ◽  
Author(s):  
Mahdis Tajabadi

AbstractConjugated single-walled carbon nanotubes (SWNT) have been shown to be promising in cancer-targeted accumulation and is biocompatible, easily excreted, and possesses little toxicity. The present study aims at reviewing the recent advancements in carbon nanotubes especially SWNT for improving the treatment of breast cancer. Nanotube drug delivery system is a potential high efficacy therapy with minimum side effects for future tumor therapy with low doses of drug.


Sign in / Sign up

Export Citation Format

Share Document