scholarly journals Evaluation of the Antimicrobial Efficacy of N-Acetyl-L-Cysteine, Rhamnolipids, and Usnic Acid—Novel Approaches to Fight Food-Borne Pathogens

2021 ◽  
Vol 22 (21) ◽  
pp. 11307
Author(s):  
Ondrej Chlumsky ◽  
Heidi J. Smith ◽  
Albert E. Parker ◽  
Kristen Brileya ◽  
James N. Wilking ◽  
...  

In the food industry, the increasing antimicrobial resistance of food-borne pathogens to conventional sanitizers poses the risk of food contamination and a decrease in product quality and safety. Therefore, we explored alternative antimicrobials N-acetyl-L-cysteine (NAC), rhamnolipids (RLs), and usnic acid (UA) as a novel approach to prevent biofilm formation and reduce existing biofilms formed by important food-borne pathogens (three strains of Salmonella enterica and two strains of Escherichia coli, Listeria monocytogenes, Staphylococcus aureus). Their effectiveness was evaluated by determining minimum inhibitory concentrations needed for inhibition of bacterial growth, biofilm formation, metabolic activity, and biofilm reduction. Transmission electron microscopy and confocal scanning laser microscopy followed by image analysis were used to visualize and quantify the impact of tested substances on both planktonic and biofilm-associated cells. The in vitro cytotoxicity of the substances was determined as a half-maximal inhibitory concentration in five different cell lines. The results indicate relatively low cytotoxic effects of NAC in comparison to RLs and UA. In addition, NAC inhibited bacterial growth for all strains, while RLs showed overall lower inhibition and UA inhibited only the growth of Gram-positive bacteria. Even though tested substances did not remove the biofilms, NAC represents a promising tool in biofilm prevention.

2021 ◽  
Vol 22 (15) ◽  
pp. 7892
Author(s):  
Ondrej Chlumsky ◽  
Sabina Purkrtova ◽  
Hana Michova ◽  
Hana Sykorova ◽  
Petr Slepicka ◽  
...  

Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2124
Author(s):  
Giulia Vanti ◽  
Ekaterina-Michaela Tomou ◽  
Dejan Stojković ◽  
Ana Ćirić ◽  
Anna Rita Bilia ◽  
...  

Food poisoning is a common cause of illness and death in developing countries. Essential oils (EOs) could be effective and safe natural preservatives to prevent and control bacterial contamination of foods. However, their high sensitivity and strong flavor limit their application and biological effectiveness. The aim of this study was firstly the chemical analysis and the antimicrobial evaluation of the EOs of Origanum onites L. and Satureja thymbra L. obtained from Symi island (Greece), and, secondly, the formulation of propylene glycol-nanovesicles loaded with these EOs to improve their antimicrobial properties. The EOs were analyzed by GC-MS and their chemical contents are presented herein. Different nanovesicles were formulated with small average sizes, high homogeneity, and optimal ζ-potential. Microscopic observation confirmed their small and spherical shape. Antibacterial and antifungal activities of the formulated EOs were evaluated against food-borne pathogens and spoilage microorganisms compared to pure EOs. Propylene glycol-nanovesicles loaded with O. onites EO were found to be the most active formulation against all tested strains. Additionally, in vitro studies on the HaCaT cell line showed that nanovesicles encapsulated with EOs had no toxic effect. The present study revealed that both EOs can be used as alternative sanitizers and preservatives in the food industry, and that their formulation in nanovesicles can provide a suitable approach as food-grade delivery system.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Giulia Tamborino ◽  
Marijke De Saint-Hubert ◽  
Lara Struelens ◽  
Dayana C. Seoane ◽  
Eline A. M. Ruigrok ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


Author(s):  
Amina Ojochide Hassan ◽  
Innocent Okonkwo Ogbonna ◽  
Victor Ugochukwu Obisike

Microbial resistance to antibiotics and biofilm formation ability of food-borne pathogens are major global health challenges. Most milk and milk products (Madara and Nono) could be vehicles for the transmission of multidrug resistant genes among any community. This study was aimed at determining the antibiotic susceptibility patterns and biofilm forming ability of some food-borne pathogens isolated from common dairy products: Madara and Nono in Makurdi metropolis. Two hundred and forty (240) samples comprising of one hundred and twenty (120) each of Madara (fresh raw milk from cow “FRM”)) and Nono (chance fermented cow milk “CFM”) were examined for the presence of pathogens. Antibiogram of bacterial isolates (Staphylococcus aureus, Escherichia coli, Shigella spp., Salmonella spp. and Klebsiella spp.) using the disc diffusion method revealed that susceptibility for Ampicillin (86.9%), Streptomycin (83.9%) and Ciprofloxacin (75.0%). Resistance was shown (26.7%) to Nalidixic acid, a commonly used antibiotic reflecting a public health concern. Most resistant isolates had a multiple antibiotics index of 0.3 (27.54%) with a least multiple antibiotics resistance index of 0.6 (0.85%). Detection of biofilm formation of isolates was done by Tube method. The study also revealed that out the total of 236 isolates tested for biofilm formation, 67 (28.4%) isolates were non or weak biofilm producers, 77 (32.6%) isolates were moderate biofilm producers and 92 (39%) isolates were strong biofilm producers. Findings of this research show high presence of a wide range of microorganisms, particularly enteric pathogens and enterotoxigenic strains of S. aureus which portrayed multidrug resistance and biofilm formation suggesting that FRM (Madara) and CRM (Nono) products might be important sources of food-borne infections and intoxication.


2021 ◽  
pp. 1-15
Author(s):  
Akrm Ghergab ◽  
Nisha Mohanan ◽  
Grace Saliga ◽  
Ann Karen C. Brassinga ◽  
David Levin ◽  
...  

Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola against the fungal pathogen Sclerotinia sclerotiorum. In addition to producing antifungal compounds, this bacterium synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds. Because the role of PHA in PA23 physiology is currently unknown, we investigated the impact of this polymer on stress resistance, adherence to surfaces, and interaction with the protozoan predator Acanthamoeba castellanii. Three PHA biosynthesis mutants were created, PA23phaC1, PA23phaC1ZC2, and PA23phaC1ZC2D, which accumulated reduced PHA. Our phenotypic assays revealed that PA23phaC1ZC2D produced less phenazine (PHZ) compared with the wild type (WT) and the phaC1 and phaC1ZC2 mutants. All three mutants exhibited enhanced sensitivity to UV irradiation, starvation, heat stress, cold stress, and hydrogen peroxide. Moreover, motility, exopolysaccharide production, biofilm formation, and root attachment were increased in strains with reduced PHA levels. Interaction studies with the amoeba A. castellanii revealed that the WT and the phaC1 and phaC1ZC2 mutants were consumed less than the phaC1ZC2D mutant, likely due to decreased PHZ production by the latter. Collectively these findings indicate that PHA accumulation enhances PA23 resistance to a number of stresses in vitro, which could improve the environmental fitness of this bacterium in hostile environments.


1998 ◽  
Vol 42 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Silvia Schwank ◽  
Zarko Rajacic ◽  
Werner Zimmerli ◽  
Jürg Blaser

ABSTRACT The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%;P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01).


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Jung Gi Min ◽  
Uriel J. Sanchez Rangel ◽  
Austin Franklin ◽  
Hiroki Oda ◽  
Zhen Wang ◽  
...  

ABSTRACT Chronic wounds are a prominent concern, accounting for $25 billion of health care costs annually. Biofilms have been implicated in delayed wound closure, but they are susceptible to developing antibiotic resistance and treatment options continue to be limited. A novel collagen-rich hydrogel derived from human extracellular matrix presents an avenue for treating chronic wounds by providing appropriate extracellular proteins for healing and promoting neovascularization. Using the hydrogel as a delivery system for localized secretion of a therapeutic dosage of antibiotics presents an attractive means of maximizing delivery while minimizing systemic side effects. We hypothesize that the hydrogel can provide controlled elution of antibiotics leading to inhibition of bacterial growth and disruption of biofilm formation. The rate of antibiotic elution from the collagen-rich hydrogel and the efficacy of biofilm disruption was assessed with Pseudomonas aeruginosa. Bacterial growth inhibition, biofilm disruption, and mammalian cell cytotoxicity were quantified using in vitro models. The antibiotic-loaded hydrogel showed sustained release of antibiotics for up to 24 h at therapeutic levels. The treatment inhibited bacterial growth and disrupted biofilm formation at multiple time points. The hydrogel was capable of accommodating various classes of antibiotics and did not result in cytotoxicity in mammalian fibroblasts or adipose stem cells. The antibiotic-loaded collagen-rich hydrogel is capable of controlled antibiotic release effective for bacteria cell death without native cell death. A human-derived hydrogel that is capable of eluting therapeutic levels of antibiotic is an exciting prospect in the field of chronic wound healing.


Sign in / Sign up

Export Citation Format

Share Document