scholarly journals Proteomics of Cryptococcus neoformans: From the Lab to the Clinic

2021 ◽  
Vol 22 (22) ◽  
pp. 12390
Author(s):  
Ben Muselius ◽  
Shay-Lynn Durand ◽  
Jennifer Geddes-McAlister

Fungal pathogens cause an array of diseases by targeting both immunocompromised and immunocompetent hosts. Fungi overcome our current arsenal of antifungals through the emergence and evolution of resistance. In particular, the human fungal pathogen, Cryptococcus neoformans is found ubiquitously within the environment and causes severe disease in immunocompromised individuals around the globe with limited treatment options available. To uncover fundamental knowledge about this fungal pathogen, as well as investigate new detection and treatment strategies, mass spectrometry-based proteomics provides a plethora of tools and applications, as well as bioinformatics platforms. In this review, we highlight proteomics approaches within the laboratory to investigate changes in the cellular proteome, secretome, and extracellular vesicles. We also explore regulation by post-translational modifications and the impact of protein–protein interactions. Further, we present the development and comprehensive assessment of murine models of cryptococcal infection, which provide valuable tools to define the dynamic relationship between the host and pathogen during disease. Finally, we explore recent quantitative proteomics studies that begin to extrapolate the findings from the bench to the clinic for improved methods of fungal detection and monitoring. Such studies support a framework for personalized medical approaches to eradicate diseases caused by C. neoformans.

2019 ◽  
Vol 19 (4) ◽  
pp. 232-241 ◽  
Author(s):  
Xuegong Chen ◽  
Wanwan Shi ◽  
Lei Deng

Background: Accumulating experimental studies have indicated that disease comorbidity causes additional pain to patients and leads to the failure of standard treatments compared to patients who have a single disease. Therefore, accurate prediction of potential comorbidity is essential to design more efficient treatment strategies. However, only a few disease comorbidities have been discovered in the clinic. Objective: In this work, we propose PCHS, an effective computational method for predicting disease comorbidity. Materials and Methods: We utilized the HeteSim measure to calculate the relatedness score for different disease pairs in the global heterogeneous network, which integrates six networks based on biological information, including disease-disease associations, drug-drug interactions, protein-protein interactions and associations among them. We built the prediction model using the Support Vector Machine (SVM) based on the HeteSim scores. Results and Conclusion: The results showed that PCHS performed significantly better than previous state-of-the-art approaches and achieved an AUC score of 0.90 in 10-fold cross-validation. Furthermore, some of our predictions have been verified in literatures, indicating the effectiveness of our method.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Shomeek Chowdhury ◽  
Stephen Hepper ◽  
Mudassir K. Lodi ◽  
Milton H. Saier ◽  
Peter Uetz

Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.


2011 ◽  
Vol 111 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Darrell D. Belke

Swim-training exercise in mice leads to cardiac remodeling associated with an improvement in contractile function. Protein O-linked N-acetylglucosamine ( O-GlcNAcylation) is a posttranslational modification of serine and threonine residues capable of altering protein-protein interactions affecting gene transcription, cell signaling pathways, and general cell physiology. Increased levels of protein O-GlcNAcylation in the heart have been associated with pathological conditions such as diabetes, ischemia, and hypertrophic heart failure. In contrast, the impact of physiological exercise on protein O-GlcNAcylation in the heart is currently unknown. Swim-training exercise in mice was associated with the development of a physiological hypertrophy characterized by an improvement in contractile function relative to sedentary mice. General protein O-GlcNAcylation was significantly decreased in swim-exercised mice. This effect was mirrored in the level of O-GlcNAcylation of individual proteins such as SP1. The decrease in protein O-GlcNAcylation was associated with a decrease in the expression of O-GlcNAc transferase (OGT) and glutamine-fructose amidotransferase (GFAT) 2 mRNA. O-GlcNAcase (OGA) activity was actually lower in swim-trained than sedentary hearts, suggesting that it did not contribute to the decreased protein O-GlcNAcylation. Thus it appears that exercise-induced physiological hypertrophy is associated with a decrease in protein O-GlcNAcylation, which could potentially contribute to changes in gene expression and other physiological changes associated with exercise.


Author(s):  
Noor Almandil ◽  
Deem Alkuroud ◽  
Sayed AbdulAzeez ◽  
Abdulla AlSulaiman ◽  
Abdelhamid Elaissari ◽  
...  

One of the most common neurodevelopmental disorders worldwide is autism spectrum disorder (ASD), which is characterized by language delay, impaired communication interactions, and repetitive patterns of behavior caused by environmental and genetic factors. This review aims to provide a comprehensive survey of recently published literature on ASD and especially novel insights into excitatory synaptic transmission. Even though numerous genes have been discovered that play roles in ASD, a good understanding of the pathophysiologic process of ASD is still lacking. The protein–protein interactions between the products of NLGN, SHANK, and NRXN synaptic genes indicate that the dysfunction in synaptic plasticity could be one reason for the development of ASD. Designing more accurate diagnostic tests for the early diagnosis of ASD would improve treatment strategies and could enhance the appropriate monitoring of prognosis. This comprehensive review describes the psychotropic and antiepileptic drugs that are currently available as effective pharmacological treatments and provides in-depth knowledge on the concepts related to clinical, diagnostic, therapeutic, and genetic perspectives of ASD. An increase in the prevalence of ASD in Gulf Cooperation Council countries is also addressed in the review. Further, the review emphasizes the need for international networking and multidimensional studies to design novel and effective treatment strategies.


Author(s):  
Jonas Defoort ◽  
Yves Van de Peer ◽  
Lorenzo Carretero-Paulet

Abstract Gene duplicates, generated either through whole genome duplication (WGD) or small-scale duplication (SSD), are prominent in angiosperms and are believed to play an important role in adaptation and in generating evolutionary novelty. Previous studies reported contrasting evolutionary and functional dynamics of duplicate genes depending on the mechanism of origin, a behaviour that is hypothesized to stem from constraints to maintain the relative dosage balance between the genes concerned and their interaction context. However, the mechanisms ultimately influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated. Here, by using a robust classification of gene duplicates in Arabidopsis thaliana, Solanum lycopersicum and Zea mays, large RNAseq expression compendia and an extensive protein-protein interaction (PPI) network from Arabidopsis, we investigated the impact of PPIs on the differential evolutionary and functional fate of WGD and SSD duplicates. In all three species, retained WGD duplicates show stronger constraints to diverge at the sequence and expression level than SSD ones, a pattern that is also observed for shared PPI partners between Arabidopsis duplicates. PPIs are preferentially distributed among WGD duplicates and specific functional categories. Furthermore, duplicates with PPIs tend to be under stronger constraints to evolve than their counterparts without PPIs regardless of their mechanism of origin. Our results support dosage balance constraint as a specific property of genes involved in biological interactions, including physical PPIs, and suggest that additional factors may be differently influencing the evolution of genes following duplication, depending on the species, time and mechanism of origin.


2020 ◽  
pp. 135245852093764
Author(s):  
Yael Hacohen ◽  
Brenda Banwell ◽  
Olga Ciccarelli

Paediatric multiple sclerosis (MS) is associated with higher relapse rate, rapid magnetic resonance imaging lesion accrual early in the disease course and worse cognitive outcome and physical disability in the long term compared to adult-onset disease. Current treatment strategies are largely centre-specific and reliant on adult protocols. The aim of this review is to examine which treatment options should be considered first line for paediatric MS and we attempt to answer the question if injectable first-line disease-modifying therapies (DMTs) are still an optimal option. To answer this question, we review the effects of early onset disease on clinical course and outcomes, with specific considerations on risks and benefits of treatments for paediatric MS. Considering the impact of disease activity on brain atrophy, cognitive impairment and development of secondary progressive MS at a younger age, we would recommend treating paediatric MS as a highly active disease, favouring the early use of highly effective DMTs rather than injectable DMTs.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 158 ◽  
Author(s):  
Varsha Garg ◽  
Aleksandra Hackel ◽  
Christina Kühn

Post-translational regulation of sucrose transporters represents one possibility to adapt transporter activity in a very short time frame. This can occur either via phosphorylation/dephosphorylation, oligomerization, protein–protein interactions, endocytosis/exocytosis, or degradation. It is also known that StSUT1 can change its compartmentalization at the plasma membrane and concentrate in membrane microdomains in response to changing redox conditions. A systematic screen for protein–protein-interactions of plant sucrose transporters revealed that the interactome of all three known sucrose transporters from the Solanaceous species Solanum tuberosum and Solanum lycopersicum represents a specific subset of interaction partners, suggesting different functions for the three different sucrose transporters. Here, we focus on factors that affect the subcellular distribution of the transporters. It was already known that sucrose transporters are able to form homo- as well as heterodimers. Here, we reveal the consequences of homo- and heterodimer formation and the fact that the responses of individual sucrose transporters will respond differently. Sucrose transporter SlSUT2 is mainly found in intracellular vesicles and several of its interaction partners are involved in vesicle traffic and subcellular targeting. The impact of interaction partners such as SNARE/VAMP proteins on the localization of SlSUT2 protein will be investigated, as well as the impact of inhibitors, excess of substrate, or divalent cations which are known to inhibit SUT1-mediated sucrose transport in yeast cells. Thereby we are able to identify factors regulating sucrose transporter activity via a change of their subcellular distribution.


2015 ◽  
Vol 370 (1679) ◽  
pp. 20150031 ◽  
Author(s):  
Alexander J. F. Egan ◽  
Jacob Biboy ◽  
Inge van't Veer ◽  
Eefjan Breukink ◽  
Waldemar Vollmer

Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.


2021 ◽  
Vol 118 (6) ◽  
pp. e2014345118
Author(s):  
Diana Ascencio ◽  
Guillaume Diss ◽  
Isabelle Gagnon-Arsenault ◽  
Alexandre K. Dubé ◽  
Alexander DeLuna ◽  
...  

Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein–protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.


Sign in / Sign up

Export Citation Format

Share Document