scholarly journals Aptamer-Aptamer Chimera for Targeted Delivery and ATP-Responsive Release of Doxorubicin into Cancer Cells

2021 ◽  
Vol 22 (23) ◽  
pp. 12940
Author(s):  
Ezaldeen Esawi ◽  
Walhan Alshaer ◽  
Ismail Sami Mahmoud ◽  
Dana A. Alqudah ◽  
Bilal Azab ◽  
...  

Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5′-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411–ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411–ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3749
Author(s):  
Yingnan Si ◽  
Ya Zhang ◽  
Hanh Giai Ngo ◽  
Jia-Shiung Guan ◽  
Kai Chen ◽  
...  

Triple-negative breast cancers (TNBCs) are highly aggressive and recurrent. Standard cytotoxic chemotherapies are currently the main treatment options, but their clinical efficacies are limited and patients usually suffer from severe side effects. The goal of this study was to develop and evaluate targeted liposomes-delivered combined chemotherapies to treat TNBCs. Specifically, the IC50 values of the microtubule polymerization inhibitor mertansine (DM1), mitotic spindle assembly defecting taxane (paclitaxel, PTX), DNA synthesis inhibitor gemcitabine (GC), and DNA damage inducer doxorubicin (AC) were tested in both TNBC MDA-MB-231 and MDA-MB-468 cells. Then we constructed the anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) tagged liposomes and confirmed its TNBC cell surface binding using flow cytometry, internalization with confocal laser scanning microscopy, and TNBC xenograft targeting in NSG female mice using In Vivo Imaging System. The safe dosage of anti-EGFR liposomal chemotherapies, i.e., <20% body weight change, was identified. Finally, the in vivo anti-tumor efficacy studies in TNBC cell line-derived xenograft and patient-derived xenograft models revealed that the targeted delivery of chemotherapies (mertansine and gemcitabine) can effectively inhibit tumor growth. This study demonstrated that the targeted liposomes enable the new formulations of combined therapies that improve anti-TNBC efficacy.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180 ◽  
Author(s):  
Jin Ah Kim ◽  
Dong Youl Yoon ◽  
Jin-Chul Kim

Since cancer cells are oxidative in nature, anti-cancer agents can be delivered to cancer cells specifically without causing severe normal cell toxicity if the drug carriers are designed to be sensitive to the intrinsic characteristic. Oxidation-sensitive liposomes were developed by stabilizing dioleoylphosphatidyl ethanolamine (DOPE) bilayers with folate-conjugated poly(hydroxyethyl acrylate-co-allyl methyl sulfide) (F-P(HEA-AMS)). The copolymer, synthesized by a free radical polymerization, was surface-active but lost its surface activity after AMS unit was oxidized by H2O2 treatment. The liposomes with F-P(HEA-AMS) were sensitive to H2O2 concentration (0%, 0.5%, 1.0%, and 2.0%) in terms of release, possibly because the copolymer lost its surface activity and its bilayer-stabilizing ability upon oxidation. Fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) revealed that doxorubicin (DOX)-loaded liposomes stabilized with folate-conjugated copolymers markedly promoted the transport of the anti-cancer drug to cancer cells. This was possible because the liposomes were readily translocated into the cancer cells via receptor-mediated endocytosis. This liposome would be applicable to the delivery carrier of anticancer drugs.


1997 ◽  
Vol 321 (1) ◽  
pp. 227-231 ◽  
Author(s):  
Josep M. FERNÁNDEZ-NOVELL ◽  
David BELLIDO ◽  
Senen VILARÓ ◽  
Joan J. GUINOVART

After incubation with glucose a dramatic change in the intracellular distribution of glycogen synthase was observed in rat hepatocytes. Confocal laser scanning microscopy showed that glycogen synthase existed diffusely in the cytosol of control cells, whereas in cells incubated with glucose it accumulated at the cell periphery. Colocalization analysis between glycogen synthase immunostaining and actin filaments showed that the change in glycogen synthase distribution induced by glucose correlated with a marked increase in the co-distribution of the two proteins, indicating that, in response to glucose, glycogen synthase moves to the actin-rich area close to the membrane. When glycogen synthase was immunostained with rabbit anti-(glycogen synthase) and Protein A–colloidal gold, few particles were observed close to the membrane in control cells. In contrast, in cells incubated with glucose most of the gold particles were found near the membrane, confirming that glycogen synthase had moved to the cell cortex. Furthermore, in agreement with the glycogen synthase distribution, glycogen deposition appeared to be more active at the periphery of the cell.


2018 ◽  
Vol 14 ◽  
pp. 756-771 ◽  
Author(s):  
Sabine Schuster ◽  
Beáta Biri-Kovács ◽  
Bálint Szeder ◽  
Viktor Farkas ◽  
László Buday ◽  
...  

Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun-Fang He ◽  
Du-Xin Jin ◽  
Xue-Gang Luo ◽  
Tong-Cun Zhang

Abstract Antimicrobial peptides have been attracting increasing attention for their multiple beneficial effects. In present study, a novel AMP with a molecular weight of 1875.5 Da, was identified from the genome of Lactobacillus casei HZ1. The peptide, which was named as LHH1 was comprised of 16 amino acid residues, and its α-helix content was 95.34% when dissolved in 30 mM SDS. LHH1 exhibited a broad range of antimicrobial activities against Gram-positive bacteria and fungus. It could effectively inhibit Staphylococcus aureus with a minimum inhibitory concentration of 3.5 μM and showed a low hemolytic activity. The scanning electron microscope, confocal laser scanning microscope and flow cytometry results showed that LHH1 exerted its antibacterial activity by damaging the cell membrane of Staphylococcus aureus. Meanwhile, LHH1 also exhibited anti-cancer cell activities against several cancer cells via breaking the cell membrane of MGC803, HCT116 and C666-1 cancer cells.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3429 ◽  
Author(s):  
Jia Yao ◽  
Yinyun Ma ◽  
Wei Zhang ◽  
Li Li ◽  
Yun Zhang ◽  
...  

TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Panyong Zhu ◽  
Pin Lv ◽  
Yazhou Zhang ◽  
Rongqiang Liao ◽  
Jing Liu ◽  
...  

Cannabidiol (CBD) is one specific kind of the cannabinoid in Cannabis sativa L with a wide range of pharmacological activities. However, the poor water solubility and specificity of CBD limits its application in pharmaceutical field. For solving these problems, in this work, we successfully prepared a targeted carrier by grafting biotin (BIO) onto ethylenediamine-β-Cyclodextrin (EN-CD) in a single step to generate a functionalized supramolecule, named BIO-CD. Subsequently, an amantadine-conjugated cannabinoids (AD-CBD) was prepared and self-assembled with the BIO-CD. A series of methods were used to characterize the inclusion behavior and physicochemical properties of AD-CBD and BIO-CD. The results showed that AD-CBD entered the cavity of BIO-CD and formed a 1:1 host-guest inclusion complex. MTT assay and confocal laser scanning microscopy (CLSM) revealed that the targeting effect and anticancer activity of AD-CBD/BIO-CD inclusion complex against three human cancer cell lines were higher than BIO-CD, AD-CBD and free CBD. Moreover, the inclusion complex could release drugs under weakly acidic conditions. These results demonstrated that AD-CBD/BIO-CD inclusion complex possess excellent targeted and anticancer activity, which is hopeful to be applied in clinic as a new therapeutic approach.


2001 ◽  
Vol 114 (15) ◽  
pp. 2735-2746
Author(s):  
Hendrik Ungefroren ◽  
Marie-Luise Kruse ◽  
Anna Trauzold ◽  
Stefanie Roeschmann ◽  
Christian Roeder ◽  
...  

In this study we investigated the functional role of FAP-1 as a potential inhibitor of CD95 (Fas, APO-1)-mediated apoptosis in pancreatic cancer cells. Stable transfection of the CD95-sensitive, FAP-1-negative cell line Capan-1 with an FAP-1 cDNA resulted in a strongly decreased sensitivity to CD95-induced apoptosis, as measured by DNA fragmentation and caspase-3 activity. Inhibition of cellular protein tyrosine phosphatases with orthovanadate dose-dependently increased CD95-induced apoptosis in CD95-resistant FAP-1-positive Panc89 and Capan-1-FAP-1 cells almost to the level seen in wild-type Capan-1 cells. Blocking the CD95/FAP-1 interaction in Panc89 cells by cytoplasmic microinjection of a synthetic tripeptide mimicking the C terminus of CD95 resulted in a mean 5.5-fold increase in apoptosis compared to cells that received a control peptide. Using confocal laser scanning microscopy we show that in Panc89 cells FAP-1 is mainly associated with the Golgi complex and with peripheral vesicles. FAP-1 displayed enhanced colocalization with CD95 upon CD95 stimulation in the Golgi complex but not in surface-associated vesicles. This correlated with a decrease in plasma membrane staining for CD95 as determined by FACS analysis. Inhibition of Golgi anterograde transport by brefeldin A abolished the anti-CD95-induced colocalization of FAP-1 and CD95 as well as the decrease in cell-surface-associated CD95. Finally, we demonstrate by immunohistochemistry that FAP-1 is strongly expressed in tumor cells from pancreatic carcinoma tissues. Taken together, these results show that FAP-1 can protect pancreatic carcinoma cells from CD95-mediated apoptosis, probably by preventing anti-CD95-induced translocation of CD95 from intracellular stores to the cell surface.


Sign in / Sign up

Export Citation Format

Share Document