scholarly journals Comparative Molecular and Metabolic Profiling of Two Contrasting Wheat Cultivars under Drought Stress

2021 ◽  
Vol 22 (24) ◽  
pp. 13287
Author(s):  
Hind Emad Fadoul ◽  
Félix Juan Martínez Rivas ◽  
Kerstin Neumann ◽  
Salma Balazadeh ◽  
Alisdair R. Fernie ◽  
...  

Drought is one of the most important threats to plants and agriculture; therefore, understanding of the mechanisms of drought tolerance is crucial for breeding of new tolerant varieties. Here, we assessed the effects of a long-term water deficit stress simulated on a precision phenotyping system on some morphological criteria and metabolite traits, as well as the expression of drought associated transcriptional factors of two contrasting drought-responsive African wheat cultivars, Condor and Wadielniel. The current study showed that under drought stress Wadielniel exhibits significant higher tillering and height compared to Condor. Further, we used gas chromatography and ultra-high performance liquid chromatography mass-spectrometry to identify compounds that change between the two cultivars upon drought. Partial least square discriminant analysis (PLS-DA) revealed that 50 metabolites with a possible role in drought stress regulation were significantly changed in both cultivars under water deficit stress. These metabolites included several amino acids, most notably proline, some organic acids, and lipid classes PC 36:3 and TAG 56:9, which were significantly altered under drought stress. Here, the results discussed in the context of understanding the mechanisms involved in the drought response of wheat cultivars, as the phenotype parameters, metabolite content and expression of drought associated transcriptional factors could also be used for potential crop improvement under drought stress.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1546
Author(s):  
Ioanna Dagla ◽  
Anthony Tsarbopoulos ◽  
Evagelos Gikas

Colistimethate sodium (CMS) is widely administrated for the treatment of life-threatening infections caused by multidrug-resistant Gram-negative bacteria. Until now, the quality control of CMS formulations has been based on microbiological assays. Herein, an ultra-high-performance liquid chromatography coupled to ultraviolet detector methodology was developed for the quantitation of CMS in injectable formulations. The design of experiments was performed for the optimization of the chromatographic parameters. The chromatographic separation was achieved using a Waters Acquity BEH C8 column employing gradient elution with a mobile phase consisting of (A) 0.001 M aq. ammonium formate and (B) methanol/acetonitrile 79/21 (v/v). CMS compounds were detected at 214 nm. In all, 23 univariate linear-regression models were constructed to measure CMS compounds separately, and one partial least-square regression (PLSr) model constructed to assess the total CMS amount in formulations. The method was validated over the range 100–220 μg mL−1. The developed methodology was employed to analyze several batches of CMS injectable formulations that were also compared against a reference batch employing a Principal Component Analysis, similarity and distance measures, heatmaps and the structural similarity index. The methodology was based on freely available software in order to be readily available for the pharmaceutical industry.


2021 ◽  
Vol 22 (3) ◽  
pp. 1158
Author(s):  
Katy Díaz ◽  
Luis Espinoza ◽  
Rodrigo Carvajal ◽  
Evelyn Silva-Moreno ◽  
Andrés F. Olea ◽  
...  

Brassinosteroids (BRs) are plant hormones that play an essential role in plant development and have the ability to protect plants against various environmental stresses, such as low and high temperature, drought, heat, salinity, heavy metal toxicity, and pesticides. Mitigation of stress effects are produced through independent mechanisms or by interaction with other important phytohormones. However, there are few studies in which this property has been reported for BRs analogs. Thus, in this work, the enhancement of drought stress tolerance of A. thaliana was assessed for a series of 2-deoxybrassinosteroid analogs. In addition, the growth-promoting activity in the Rice Lamina Inclination Test (RLIT) was also evaluated. The results show that analog 1 exhibits similar growth activity as brassinolide (BL; used as positive control) in the RLIT bioassay. Interestingly, both compounds increase their activities by a factor of 1.2–1.5 when they are incorporated to polymer micelles formed by Pluronic F-127. On the other hand, tolerance to water deficit stress of Arabidopsis thaliana seedlings was evaluated by determining survival rate and dry weight of seedlings after the recovery period. In both cases, the effect of analog 1 is higher than that exhibited by BL. Additionally, the expression of a subset of drought stress marker genes was evaluated in presence and absence of exogenous applied BRs. Results obtained by qRT-PCR analysis, indicate that transcriptional changes of AtDREBD2A and AtNCED3 genes were more significant in A. thaliana treated with analog 1 in homogeneous solution than in that treated with BL. These changes suggest the activation of alternative pathway in response to water stress deficit. Thus, exogenous application of BRs synthetic analogs could be a potential tool for improvement of crop production under stress conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259585
Author(s):  
Gull Mehak ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Prashant Kaushik ◽  
Mohamed A. El-Sheikh ◽  
...  

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoyan Zhang ◽  
Liang Yang ◽  
Xiaoyan Huang ◽  
Yue Gao

Abstract Background The side effects caused by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have often appeared globally. There is no research on the changes of endogenous metabolites among PMR- and PMRP-treated rats. The aim of this study was to evaluate the varying metabolomic effects between PMR- and PMRP-treated rats. We tried to discover relevant differences in biomarkers and endogenous metabolic pathways. Methods Hematoxylin and eosin staining and immunohistochemistry staining were performed to find pathological changes. Biochemical indicators were also measured, one-way analysis of variance with Dunnett’s multiple comparison test was used for biochemical indicators comparison among various groups. Metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS) was performed to find the changes in metabolic biomarkers. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to reveal group clustering trend, evaluate and maximize the discrimination between the two groups. MetaboAnalyst 4.0 was performed to find and confirm the pathways. Results PMR extracts exhibited slight hepatotoxic effects on the liver by increasing aspartate and alanine aminotransferase levels. Twenty-nine metabolites were identified as biomarkers, belonging to five pathways, including alpha-linolenic acid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, and primary bile acid biosynthesis. Conclusion This study provided a comprehensive description of metabolomic changes between PMR- and PMRP-treated rats. The underlying mechanisms require further research.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2919
Author(s):  
Natasa P. Kalogiouri ◽  
Reza Aalizadeh ◽  
Marilena E. Dasenaki ◽  
Nikolaos S. Thomaidis

Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel ultra-high-performance liquid chromatography–quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to detect the mislabeling of Greek PDO Kalamata table olives, and thereby establish their authenticity. A non-targeted screening workflow was applied, coupled to advanced chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) in order to fingerprint and accurately discriminate PDO Greek Kalamata olives from Kalamata (or Kalamon) type olives from Egypt and Chile. The method performance was evaluated using a target set of phenolic compounds and several validation parameters were calculated. Overall, 65 table olive samples from Greece, Egypt, and Chile were analyzed and processed for the model development and its accuracy was validated. The robustness of the chemometric model was tested using 11 Greek Kalamon olive samples that were produced during the following crop year, 2018, and they were successfully classified as Greek Kalamon olives from Kalamata. Twenty-six characteristic authenticity markers were indicated to be responsible for the discrimination of Kalamon olives of different geographical origins.


2017 ◽  
Vol 29 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Leila Karami ◽  
Nasser Ghaderi ◽  
Taimoor Javadi

Abstract Dust pollution can negatively affect plant productivity in hot, dry areas with high insolation during summer. To understand the effect of water-deficit and its interaction with dust pollution on vegetative and physiological changes in grapevine ʻBidaneh Sefidʼ, two-year-old plants were subjected to drought stress (-0.1 and -1 MPa) and dust treatment in a greenhouse during 2013 and 2014. The results showed that dust had a significant negative effect on the number of leaves, shoot length, root and shoot dry weights, and total dry weight under both drought and well-irrigated conditions. Dust, when applied in combination with drought, caused severe growth reduction. Leaf relative water content (RWC) and membrane stability index (MSI) were reduced under dust and drought stress, while soluble carbohydrate, proline, malondialdehyde (MDA) and H2O2 concentrations increased. Furthermore, dust application resulted in characteristics similar to those induced by water-deficit stress and intensified vegetative and physiological changes when applied together. Dust and drought treatments increased peroxidases and ascorbate peroxidase activities when compared to the control. The results indicate that dust has an adverse effect on the growth and physiology of grapevine and plays a negative role in the response of grapevine to drought stress.


2014 ◽  
Vol 171 (14) ◽  
pp. 1289-1298 ◽  
Author(s):  
Srirama Krishna Reddy ◽  
Shuyu Liu ◽  
Jackie C. Rudd ◽  
Qingwu Xue ◽  
Paxton Payton ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Inderbir Singh ◽  
Prateek Juneja ◽  
Birender Kaur ◽  
Pradeep Kumar

Chemometrics involves application of various statistical methods for drawing vital information from various manufacturing-related processes. Multiway chemometric models like parallel factor analysis (PARAFAC), Tucker-3, N-partial least square (N-PLS), and bilinear models like principle component regression (PCR) and partial least squares (PLS) have been discussed in the paper. Chemometric approaches can be used to analyze the data obtained from various instruments including near infrared (NIR), attenuated total reflectance Fourier transform infrared (ATR-FTIR), high-performance liquid chromatography (HPLC), and terahertz pulse spectroscopy. The technique has been used in the quality assurance and quality control of pharmaceutical solid dosage forms. Moreover, application of chemometric methods in the evaluation of properties of pharmaceutical powders and tablet parametric tests has also been discussed in the review. It has been suggested as a useful method for the real-time in-process testing and is a valuable process analytical tool.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Houkang Cao ◽  
Yanxiu Guo ◽  
Ling Jin

We clarified the hepatoprotective effect of Gentiana dahurica Fisch ethanol extract (GDEE) in our previous study, and we further revealed the mechanism with the help of metabolomics technology in this study. The livers from Control group, Alcohol group, and Alcohol + GDEE group were analyzed by metabolomics. The metabolites in the liver were separated by ultra-high-performance liquid chromatography (UHPLC) and were tentatively identified using mass spectrometry (MS)/MS analysis. Differential metabolites were defined with VIP > 1 and P < 0.05 . Principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to analyze differences among these groups. The results showed that the groups could be clearly distinguished by PCA and OPLS-DA analysis. Alcohol and GDEE could change the overall profile of liver metabolites. Alterations in liver tissues of ALD mice induced by alcohol were mainly involved in the dipeptides, purine and pyrimidine metabolism and glucose and lipid metabolism, which could be partly affected by GDEE. This study revealed that the mechanism of GDEE in alleviating ALD had the characteristics of multitarget and multipathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Narendra Sharma ◽  
Vimlendu Bhushan Sinha ◽  
N. Arun Prem Kumar ◽  
Desiraju Subrahmanyam ◽  
C. N. Neeraja ◽  
...  

Crop improvement for Nitrogen Use Efficiency (NUE) requires a well-defined phenotype and genotype, especially for different N-forms. As N-supply enhances growth, we comprehensively evaluated 25 commonly measured phenotypic parameters for N response using 4 N treatments in six indica rice genotypes. For this, 32 replicate potted plants were grown in the green-house on nutrient-depleted sand. They were fertilized to saturation with media containing either nitrate or urea as the sole N source at normal (15 mM N) or low level (1.5 mM N). The variation in N-response among genotypes differed by N form/dose and increased developmentally from vegetative to reproductive parameters. This indicates survival adaptation by reinforcing variation in every generation. Principal component analysis segregated vegetative parameters from reproduction and germination. Analysis of variance revealed that relative to low level, normal N facilitated germination, flowering and vegetative growth but limited yield and NUE. Network analysis for the most connected parameters, their correlation with yield and NUE, ranking by Feature selection and validation by Partial least square discriminant analysis enabled shortlisting of eight parameters for NUE phenotype. It constitutes germination and flowering, shoot/root length and biomass parameters, six of which were common to nitrate and urea. Field-validation confirmed the NUE differences between two genotypes chosen phenotypically. The correspondence between multiple approaches in shortlisting parameters for NUE makes it a novel and robust phenotyping methodology of relevance to other plants, nutrients or other complex traits. Thirty-Four N-responsive genes associated with the phenotype have also been identified for genotypic characterization of NUE.


Sign in / Sign up

Export Citation Format

Share Document