scholarly journals Telomere Shortening and Its Association with Cell Dysfunction in Lung Diseases

2021 ◽  
Vol 23 (1) ◽  
pp. 425
Author(s):  
Andy Ruiz ◽  
Julio Flores-Gonzalez ◽  
Ivette Buendia-Roldan ◽  
Leslie Chavez-Galan

Telomeres are localized at the end of chromosomes to provide genome stability; however, the telomere length tends to be shortened with each cell division inducing a progressive telomere shortening (TS). In addition to age, other factors, such as exposure to pollutants, diet, stress, and disruptions in the shelterin protein complex or genes associated with telomerase induce TS. This phenomenon favors cellular senescence and genotoxic stress, which increases the risk of the development and progression of lung diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, SARS-CoV-2 infection, and lung cancer. In an infectious environment, immune cells that exhibit TS are associated with severe lymphopenia and death, whereas in a noninfectious context, naïve T cells that exhibit TS are related to cancer progression and enhanced inflammatory processes. In this review, we discuss how TS modifies the function of the immune system cells, making them inefficient in maintaining homeostasis in the lung. Finally, we discuss the advances in drug and gene therapy for lung diseases where TS could be used as a target for future treatments.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jeremy A. Scott ◽  
Harm Maarsingh ◽  
Fernando Holguin ◽  
Hartmut Grasemann

Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hernán F. Peñaloza ◽  
Rick van der Geest ◽  
Joel A. Ybe ◽  
Theodore J. Standiford ◽  
Janet S. Lee

The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.


Author(s):  
Yang Li ◽  
Zhengrong Yin ◽  
Jinshuo Fan ◽  
Siyu Zhang ◽  
Weibing Yang

Abstract An increasing number of studies have reported that exosomes released from various cells can serve as mediators of information exchange between different cells. With further exploration of exosome content, a more accurate molecular mechanism involved in the process of cell-to-cell communication has been revealed; specifically, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are shuttled by exosomes. In addition, exosomal miRNAs and lncRNAs may play vital roles in the pathogenesis of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, and asthma. Consequently, exosomal miRNAs and lncRNAs show promise as diagnostic biomarkers and therapeutic targets in several lung diseases. This review will summarize recent knowledge about the roles of exosomal miRNAs and lncRNAs in lung diseases, which has shed light on the discovery of novel diagnostic methods and treatments for these disorders. Because there is almost no published literature about exosomal lncRNAs in COPD, asthma, interstitial lung disease, or tuberculosis, we summarize the roles of exosomal lncRNAs only in lung cancer in the second section. This may inspire some new ideas for researchers who are interested in whether lncRNAs shuttled by exosomes may play roles in other lung diseases.


2017 ◽  
Vol 26 (144) ◽  
pp. 170044 ◽  
Author(s):  
Sabine Geiger ◽  
Daniela Hirsch ◽  
Felix G. Hermann

Besides cancer and cardiovascular diseases, lung disorders are a leading cause of morbidity and death worldwide. For many disease conditions no effective and curative treatment options are available. Cell therapies offer a novel therapeutic approach due to their inherent anti-inflammatory and anti-fibrotic properties. Mesenchymal stem/stromal cells (MSC) are the most studied cell product. Numerous preclinical studies demonstrate an improvement of disease-associated parameters after MSC administration in several lung disorders, including chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Furthermore, results from clinical studies using MSCs for the treatment of various lung diseases indicate that MSC treatment in these patients is safe. In this review we summarise the results of preclinical and clinical studies that indicate that MSCs are a promising therapeutic approach for the treatment of lung diseases. Nevertheless, further investigations are required.


2014 ◽  
Vol 11 (Supplement 3) ◽  
pp. S154-S160 ◽  
Author(s):  
M. Bradley Drummond ◽  
A. Sonia Buist ◽  
James D. Crapo ◽  
Robert A. Wise ◽  
Stephen I. Rennard

2021 ◽  
pp. 55-68
Author(s):  
Vyacheslav S. Lotkov ◽  
Anton Vladimirovich Glazistov ◽  
Antonina G. Baykova ◽  
Marina Yuryevna Vostroknutova ◽  
Natalia E. Lavrentieva

The formation and progression of chronic dust bronchitis and chronic bronchitis of toxic-chemical etiology, chronic obstructive pulmonary disease is accompanied by an increase in the degree of ventilation disorders, echocardiographic signs of hypertrophy and dilatation of the right ventricle are formed, typical for chronic pulmonary heart disease. The progression of disturbances in the function of external respiration in dusty lung diseases leads to a decrease in myocardial contractility. The detection of hemodynamic disturbances at the early stages of the development of occupational lung diseases indicates the need for individual monitoring of the functional state of the cardiovascular system in the process of contact with industrial aerosols, especially in groups of workers with long-term exposure.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3467
Author(s):  
Amel Nasri ◽  
Florent Foisset ◽  
Engi Ahmed ◽  
Zakaria Lahmar ◽  
Isabelle Vachier ◽  
...  

Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.


2021 ◽  
Author(s):  
Sakiko Masuda ◽  
Kurumi Kato ◽  
Misato Ishibashi ◽  
Yuka Nishibata ◽  
Ayako Sugimoto ◽  
...  

Abstract When patients with preexisting lung diseases, such as chronic obstructive pulmonary disease, interstitial pneumonitis, and pulmonary arterial hypertension, develop pneumonia, the complication often exacerbates the underlying diseases. Although neutrophil extracellular traps (NETs) are important components of innate immune system, the residue of NETs in the tissue can harm the host. We examined the expression of hypoxia-inducible factor 1α (HIF-1α) and NETs in the lungs of patients with lung diseases complicated with pneumonia, and investigated the properties of NETs generated under hypoxia. This study demonstrated that the amount of NETs in pulmonary lesions was greater in patients with pneumonia than in patients without pneumonia and displayed a positive correlation between the amount of NETs and HIF-1α expression. We further demonstrated that the formation of typical lytic NETs was suppressed and round-shaped NETs were generated under hypoxic conditions in vitro. These round NETs were resistant to digestion by the principal NET regulator, DNase I. Focusing on actin rearrangement in neutrophils stimulated under hypoxic conditions, we found that G-actin polymerization and F-actin degradation—both of which are observed time-dependently under normoxic conditions—were disrupted, suggesting that hypoxia mediated the incomplete NET formation. Moreover, neutrophils stimulated under hypoxic conditions possessed cytotoxicity. Accumulation of neutrophils that form degradation-resistant NETs and possess cytotoxicity, which are generated under hypoxic circumstances, are expected to be involved in exacerbation of underlying lung diseases complicated with pneumonia.


2021 ◽  
Vol 27 ◽  
Author(s):  
Yu Hua ◽  
Yan Ding ◽  
Yapeng Hou ◽  
Yanhong Liu ◽  
Kejun Mao ◽  
...  

: Lung diseases are common clinical illnesses with high morbidity and mortality, which seriously threaten human health. In recent years, increasing evidence suggests that exosomes play a pivotal role in intercellular communication by delivering their cargo to pulmonary target cells,such as microRNAs. Physiologically, exosomes have been shown to be a critical mediator in maintaining homeostasis function in the complex thin-walled lung tissue and airway structure. Apart from being a diagnostic and prognostic biomarker, exosomes also participate in the progression of some lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, acute lung injury, lung cancer, interstitial lung disease, and tuberculosis. Here, we summarize the recent findings on the involvement of exosomes and exosomal microRNAs in the pathogenesis, diagnosis, and therapy of lung diseases, aiming to provide more information to discover novel diagnostic methods and treatment strategies for these disorders.


Sign in / Sign up

Export Citation Format

Share Document