scholarly journals Biological Strategies of Invasive Bark Beetles and Borers Species

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 367
Author(s):  
Denis A. Demidko ◽  
Natalia N. Demidko ◽  
Pavel V. Mikhaylov ◽  
Svetlana M. Sultson

The present study attempts to identify the biological characteristics of invasive (high-impact in the secondary area) bark beetles and borers species, contributing to their success in an invaded area. We selected 42 species based on the CABI website data on invasive species and information on the most studied regional faunas. Four groups of species with different invasion strategies were identified based on the cluster and factor analysis. The first one (inbred strategy) is characterized by flightless males, xylomycetophagy, low fecundity (~50 eggs), inbreeding, polyvoltinism, and polyphagy. Species with an aggressive strategy are poly- or monovoltine, feeds on a limited number of hosts, larval feeding on the inner bark, are often associated with phytopathogens, and produce aggregation pheromones. Representatives of the polyphagous strategy have a wide range of hosts, high fecundity (~150 eggs), larval feeding on wood, and their life cycle is at least a year long. For the intermediate strategy, the typical life cycle is from a year or less, medium fecundity, feed on inner bark tissues, mono- or oligophagy. Comparison with low-impact alien species showed that the most significant traits from the viewpoint of the potential danger of native plant species are high fecundity, polyvoltinism, presence of symbiotic plant pathogens, long-range or aggregation pheromones.

2008 ◽  
Vol 1 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Bryan A. Endress ◽  
Catherine G. Parks ◽  
Bridgett J. Naylor ◽  
Steven R. Radosevich

AbstractSulfur cinquefoil is an exotic, perennial forb that invades a wide range of ecosystems in western North America. It forms dense populations and often threatens native plant species and communities. In this study, we address the following questions: (1) what herbicides, rates, and application times are most effective at reducing sulfur cinquefoil abundance while having the least impact on native plants; and (2) does postherbicide seeding with native grass species increase native plant abundance? In 2002, we experimentally examined the effects of five herbicides (dicamba + 2,4-D; metsulfuron-methyl; triclopyr; glyphosate; and picloram) at two rates of application (low and high), three application times (early summer, fall, and a combined early summer–fall treatment), and two postherbicide seed addition treatments (seeded or not seeded) on sulfur cinquefoil abundance, plant community composition, and species richness. Experimental plots were monitored through 2005. Picloram was the most effective herbicide at reducing sulfur cinquefoil density, the proportion of remaining adult plants, and seed production. The effects of picloram continued to be evident after 3 yr, with 80% reduction of sulfur cinquefoil in 2005. In addition, seeding of native grass seeds alone (no herbicide application) reduced the proportion of sulfur cinquefoil plants that were reproductively active. Despite reductions in sulfur cinquefoil abundance, all treatments remained dominated by exotic species because treated areas transitioned from exotic forb- to exotic grass-dominated communities. However, a one-time herbicide application controlled sulfur cinquefoil for at least 3 yr, and therefore might provide a foundation to begin ecological restoration. Herbicide applications alone likely are to be insufficient for long-term sulfur cinquefoil control without further modification of sites through native grass or forb seeding. Integrating herbicides with native plant seeding to promote the development of plant communities that are resistant to sulfur cinquefoil invasion is a promising management approach to ecological restoration.


2021 ◽  
Author(s):  
Chris Parker

Abstract I. cylindrica is a serious weed not only in crops but also in natural areas, causing serious economic and environmental damage. The ability of I. cylindrica to effectively compete for water and nutrients, spread and persist through the production of seeds and rhizomes that can survive a wide range of environmental conditions, and its allelopathic effects and pyrogenic nature, allow it to exclude native plant species and other desirable plants and dominate large areas of land.


2018 ◽  
Vol 108 (7) ◽  
pp. 870-877 ◽  
Author(s):  
Marin Ježić ◽  
Jelena Mlinarec ◽  
Rosemary Vuković ◽  
Zorana Katanić ◽  
Ljiljana Krstin ◽  
...  

Invasive species, especially plant pathogens, have a potential to completely eradicate native plant species and remodel landscapes. Tripartite interactions among sweet chestnut (Castanea sativa), chestnut blight-causing invasive fungus Cryphonectria parasitica, and hyperparasitic virus Cryphonectria hypovirus 1 (CHV1) were studied in two populations. The number of different vegetative compatibility (vc) types of C. parasitica more than doubled over the 10 years, while the hypovirulence incidence dropped in one population and slightly increased in the other one. Over the course of our 3-year monitoring experiment, the prevalence of hypovirulent isolates obtained from monitored cankers increased slowly (i.e., more hypovirulent isolates were being obtained from the same cankers over time). Within studied cankers, considerable changes in vc type and CHV1 presence were observed, indicating a highly dynamic system in which virulent and hypovirulent mycelia, sometimes of discordant vc types, often appeared together. The increase in hypovirulence prevalence did not have any observable curative effect on the cankers and, occasionally, reactivation of healed cankers by new, virulent C. parasitica isolates was observed. Both short- and long-term observations and revalidation of the infected plant populations are necessary to accurately estimate disease progress and formulate an adequate disease management strategy.


1997 ◽  
Vol 45 (5) ◽  
pp. 783 ◽  
Author(s):  
Shauna Roche ◽  
Kingsley W. Dixon ◽  
John S. Pate

Seed germination of many Australian native plant species has consistently proven to be fractious. With the discovery of smoke-mediated germination, it is now possible to better understand the heterogeneity in germination patterns for a wide range of species both in situ and ex situ. In the present study, over 180 species were examined as to viability and smoke responsiveness of freshly collected seed. Soil storage and a number of commonly used seed pre-treatments were employed in combination with smoke to examine both longevity in artificially constructed seed banks, and the role of seed ageing in improved germination. Methods of smoke application for commercial use were also investigated. Viability decline over 1 year varied between 10% and 80%. Reductions of as little as 15% were found to compromise the ability of a number of species to successfully recruit in consecutive seasons. When fresh seed was used,almost 70% of species tested responded positively to smoke whether applied prior to or after sowing. Variation in success between the two methods confirmed earlier conclusions that substances contained in plant-derived smoke may be inhibitory at high concentrations for particularly sensitive species. Only 10% of species under investigation recorded optimum germination with seed ageing alone but when smoke was applied as a treatment after soil storage, 60% of species responded positively. Implications for horticulture, rehabilitation, seed bank research and habitat management are discussed.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2545
Author(s):  
Kaitlynn Lavallee ◽  
Pushpa Gautam Soti ◽  
Hansapani Rodrigo ◽  
Rupesh Kariyat ◽  
Alexis Racelis

The incorporation of native plant species is central to restoration efforts, but this is often limited by both the availability of seeds and the relatively low viability and germination rates of commercially available seeds. Although pre-sowing treatments are commonly used to improve germination rates of seeds, the efficacy of these treatments is found to vary across species. In this study, we tested how four pre-sow treatments (physical scarification, acid scarification, cold stratification, and aerated hydropriming) affected the viability and seed germination rates of 12 commercially available plant species native to south Texas and commonly used in restoration efforts. Our results show that the viability of the seeds have a wide range, from 78% to 1.25%. Similarly, the total germination rate ranged from 62% to 0%. We found that pre-sowing treatments accelerated the germination rate in 9 of 12 plant species tested, but the effect varied by treatment. Collectively, our results identify various methods to achieve the best germination rates for native plants of south Texas, to help improve restoration efforts across the region.


2015 ◽  
Vol 34 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Michal Beniak ◽  
Žaneta Pauková ◽  
Alexander Fehér

AbstractMany ecological studies showed that species density (the number of species per unit area) in nonnative organism groups of the mountain areas decreases with increasing altitude. The aim of the paper is to determine the variability in the incidence of non-native plant species (neophytes) associated with the change in altitude and links of the invading taxons to reference habitat types, as well as their links to three ecologically very similar, however in natural conditions, different areas. In general, the most invaded habitats are those which are highly influenced by human activities. Firstly, data collection was conducted through field mapping of build-up areas in South-western Slovakia. Subsequently, with the assistance of ordination methods, we evaluated the level of association of invasive neophytes according to the set objectives. We found that altitude was an important factor determining variability of invasive neophytes’ occurrence. Total amount of habitats with invasive neophytes’ occurrence showed a linear increase along the altitudinal gradient. Many invasive neophytes adapted to abandoned habitats of upland territory were also able to grow along roads, and vice versa, abandoned and unused habitats of lowland areas created conditions for many typical invasive neophytes occurring along roads and habitats of gardens and yards. Railways of lowland areas provided habitats and means of spread of invasive woody neophytes. Gardens and yards were important sources of alien neophytes in all observed territories. Invasive neophyte Aster novi-belgii can be described as a very variable species tolerant to a wide range of factors limiting the spread of species along the elevation gradient.


2014 ◽  
Vol 10 (1) ◽  
pp. 20130939 ◽  
Author(s):  
Thomas J. Stohlgren ◽  
Marcel Rejmánek

A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species–area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 ( Science 339 , 316–318. ( doi:10.1126/science.1226817 )), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness–log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.


NeoBiota ◽  
2018 ◽  
Vol 41 ◽  
pp. 19-65 ◽  
Author(s):  
Khensani V. Nkuna ◽  
Vernon Visser ◽  
John R.U. Wilson ◽  
Sabrina Kumschick

Decisions to allocate management resources should be underpinned by estimates of the impacts of biological invasions that are comparable across species and locations. For the same reason, it is important to assess what type of impacts are likely to occur where, and if such patterns can be generalised. In this paper, we aim to understand factors shaping patterns in the type and magnitude of impacts of a subset of alien grasses. We used the Generic Impact Scoring System (GISS) to review and quantify published impact records of 58 grass species that are alien to South Africa and to at least one other biogeographical realm. Based on the GISS scores, we investigated how impact magnitudes varied across habitats, regions and impact mechanisms using multiple regression. We found impact records for 48 species. Cortaderiaselloana had the highest overall impact score, although in contrast to five other species (Glyceriamaxima, Nassellatrichotoma, Phalarisaquatica, Polypogonmonspeliensis, and Sorghumhalepense) it did not score the highest possible impact score for any specific impact mechanism. Consistent with other studies, we found that the most frequent environmental impact was through competition with native plant species (with 75% of cases). Socio-economic impacts were recorded more often and tended to be greater in magnitude than environmental impacts, with impacts recorded particularly often on agricultural and animal production (57% and 51% of cases respectively). There was variation across different regions and habitats in impact magnitude, but the differences were not statistically significant. In conclusion, alien grasses present in South Africa have caused a wide range of negative impacts across most habitats and regions of the world. Reviewing impacts from around the world has provided important information for the management of alien grasses in South Africa, and, we believe, is an important component of management prioritisation processes in general.


2020 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Triadica sebifera is a tree that behaves as an aggressive weed and forms monospecific stands with the potential to displace native plant species altering the composition, structure and functioning of invaded ecosystems. It is also able to alter nutrient cycles, fire regimes and successional patterns of invaded sites. Triadica sebifera is a prolific seed producer adapted to grow in a wide range of habitats. Its tolerance to drought, flooding and a degree of salinity, effective dispersal of seeds by avian vectors and water and a high germination rate contribute to the invasiveness of this species. Currently, this species is listed as invasive in the United States, India and Australia, but the range of introduction and naturalization of this species is very extensive across tropical, subtropical and temperate regions of the world.


2016 ◽  
Vol 35 (2) ◽  
pp. 136-147 ◽  
Author(s):  
Marek Gális ◽  
Jela Galková ◽  
Jozef Straňák

AbstractThis study characterises an impact of secondary landscape structure on the introduction of non-native plant species during the years 2008 and 2010−2012. The field mapping was realised in the cadastral area of the Topoľčany town. The area of study consists of built-up area with surrounding agricultural land. During the period of our research, we identified the presence of total 55 non-native plant species, including 21 invasive, 11 casual and 23 naturalised. The highest dominance occurred in elements of ruderal vegetation without trees (22) and in the vegetation protection of aquatic dams (15). Several species were observed in a wide range of landscape elements. The occurrence in many structurally different types of habitats confirmed the ability of non-native species to tolerate a wide range of biotic and abiotic conditions.


Sign in / Sign up

Export Citation Format

Share Document